
WARP3D-Release 10.8

Dynamic Nonlinear Analysis of Solids Using A

Preconditioned Conjugate Gradient Software Architecture

By

Kyle C. Koppenhoefer
Arne. S. Gullerud

Claudio Ruggieri
Robert H. Dodds, Jr.

University of IUinois

Brian E. Healy
Exxon Production Research Company

A Report on a Research Project Sponsored by the:

U.S. Nuclear Regulatory Commission

Office of Nuclear Regulatory Research

Division of Engineering

Washington, D.C.

NASA-Ames Research Center

Moffett Field, California

and

NASA-Langley Research Center

Langley, Virginia

University of Illinois

Urbana, Illinois

September 1998

ACKNOWLEDGEMENTS

This investigation was supported by grants principally from the Nuclear Regulatory Com-

mission, the National Aeronautic and Space Administration (Ames and Langley Research

Centers) and the Heavy Section Steel Technology Program (HSST) at the Oak Ridge Na-

tional Laboratory.

Early research on the numerical algorithms and software architecture of WARP3D were

supported by Grant SCCA 90-82144 from the Illinois Department of Commerce and Grant

DE-FG02-85ER25001 from the Department of Energy made to the Center for Supercom-

puter Research and Development at the University of Illinois.

Computational support for software development and verification was provided by the De-

partment of Civil Engineering HP workstation network made possible, in part, by grants

from the Hewlett-Packard Company. Supercomputer (Cray-90) access was made avail-

able by the National Aerodynamic Simulation facility operated by the NASA-Ames re-

search center. The support of all these organizations is gratefully acknowledged.

Recent research and development efforts on improved 3-D fracture models have been spon-

sored by NASA Grant NCC2-5126.

The authors express their appreciation to colleagues Prof. Nick Aravas (University of Perm-

sylvania), Prof. C. Fong Shih (Brown University), Prof. Alan Needleman (Brown Universi-

ty) and Dr. Sam Key (Sandia National Laboratory) for many helpful suggestions on the im-

plementation of nonlinear constitutive models.

ii

Contents

Section No. Page

Acknowledgements ... ii

List of Figures ... vii

Chapter 1 Introduction ... 1.1-1

1.1 What is WARP3D? ... 1.1-1

1.2 Illustrative Problem .. 1.2-1

1.3 Manual Conventions ... 1.3-1

1.4 Nonlinear Equations of Motion 1.4--1

1.5 Dynamic Analysis: Newmark/_ Method 1.5-1

1.6 Solution of Nonlinear Equations: Newton Method 1.6-1

1.7 Linear Equation Solvers .. 1.7-1

1.7.1 Linear Preconditioned Conjugate Gradient Solver 1.7-1

1.7.2 Direct Solvers (Profile and Sparse) 1.7-5

1.7.3 Solver Summary .. 1.7-5

1.8 Element Formulations .. 1.8-1

1.8.1 Interpolation Functions .. 1.8-1
1.8.2 Cartesian Derivatives .. 1.8-2

1.8.3 B Matrix ... 1.8-3

1.8.4 Internal Force Vector .. 1.8-3

1.8.5 Strain Increment for Stress Updating 1.8--4

1.8.6 Tangent Stiffness Matrix 1.8--4
1.8.7 Mass Matrix .. 1.8-6

1.9 Finite Strain Plasticity ... 1.9-1

1.9.1 Kinematics, Strain-Stress Measures 1.9-1

1.9.2 Selection of Strain and Stress Rates 1.9--4

1.9.3 Elastic-Plastic Decomposition 1.9-5
1.9.4 Numerical Procedures ... 1.9-6

Chapter 2 Model Definition 2.1-1

2.1 Model Name and Sizes ... 2.1-2

2.2 Material Definitions .. 2.2-1

2.2.1 Material Command .. 2.2-1

2.2.2 Stress-Strain Curve Command 2.2-1

2.3 Element Types and Properties 2.3-1

2.4 Nodal Coordinates ... 2.4-1

2.5 Element Incidences .. 2.5-1

o.o

111

2.8.1

2.8.2

2.8.3

2.8.4

2.8.5

2.6 Element Blocking ..

2.7 Nodal Constraints ..

2.7.1 Non-Global Constraints

2.7.2 Constraints in Nonlinear Analyses

2.7.3 Display of Current Constraint Data

2.8 Loads (Including Imposed Temperatures)

Loading Patterns ..

Nodal Loads ..

Element Loads ..

Step Loads ..

Displacement Control Loading

2.9 Solution Parameters ...

2.9.1

2.9.2

2.9.3

2.9.4

2.9.5

2.9.6

2.9.7

2.9.8

Linear Equation Solver ..

Dynamic Analysis Parameters

Newton Iteration Parameters

Adaptive Step Size Control

Batch Status Messages ..

CPU Time Limit ...

Displacement Extrapolation

Material Model Messages

2.6-1

2.7-1

2.7-1

2.7-2

2.7-2

2.8-1

2.8-1

2.8-2

2.8-2

2.8-2

2.8-3

2.9-1

2.9-1

2.9-4

2.9-4

2.9-6

2.9-7

2.9-8

2.9-8

2.9-9

2.9.9 Residual Loads Printing 2.9-9

2.9.10 B Element Stabilization .. 2.9-9

2.9.11 Consistent [Q] Matrix ... 2.9-10

2.10 Compute Requests .. 2.10-1

2.11 Output Requests .. 2.11-1

2.11.1 Printed Results .. 2.11-1

2.11.2 Patran Compatible Result Files 2.11-2

2.11.3 Patran Compatible Neutral File for Model 2.11-4

2.12 Analysis Restart .. 2.12-1

2.13 Utility (*) Commands ... 2.13-1

Chapter 3

3.1

3.2

Elements and Material Models 3.1-1

Element Type: 13disop, ts12isop, ts15isop, q3disc_p 3.1-1

3.1.1

3.1.2

3.1.3

3.1.4

3.

3.

3.

3.

3.2.1

Node and Gauss Point Ordering 3.1-1

Element Properties .. 3.1-2

Output Options ... 3.1-3

Mass Formulation ... 3.1-3

1.5 Element Loads .. 3.1-4

1.6 Strains-Stresses for Geometric Nonlinear Formulation 3.1-6

1.7 The B Formulation .. 3.1-7

1.8 Example .. 3.1-9

Material Model Type: deformation 3.2-1

Formulation and Computational procedures 3.2-1

iv

w

w

n

w

3.2.2 Model Properties .. 3.2-3

3.2.3 Model Output ... 3.2-3

3.2.4 Computational Efficiency 3.2-3

3.2.5 Example .. 3.2-3

3.3 Material Model Type: bilinear (raises, rate independent) 3.3-1

3.3.1 Stress-Strain Curve and Hardening Options 3.3-1

3.3.2 Model Properties .. 3.3-3

3.3.3 Model Output ... 3.3-3

3.3.4 Computational Efficiency 3.3-4

3.3.5 Example .. 3.3-4

3.3.6 Plasticity Algorithms .. 3.3-4

3.4 Material Model Type: raises (general hardening, rate dependent) 3.4-1

3.4.1 Stress-Strain Curves and Hardening 3.4-1

3.4.2 Model Properties .. 3.4-1

3.4.3 Model Output ... 3.4-1

3.4.4 Computational Efficiency 3.4-3

3.4.5 Example .. 3.4-4

3.4.6 Plasticity Algorithms .. 3.4-4

3.5 Material Model Type: gurson 3.5-1

3.5.1 Stress-Strain Curves .. 3.5-1

3.5.2 Viscoplasticity ... 3.5-2
3.5.3 Nucleation Model .. 3.5-2

3.5.4

3.5.5

3.5.6

3.5.7

3.5.8

3.5.9

3.5.10

Element Extinction .. 3.5-4

Adaptive Step Sizes .. 3.5-4

Model Properties .. 3.5--4

Model Output ... 3.5-4

Computational Efficiency 3.5-5

Example .. 3.5-5

Plasticity Algorithms .. 3.5-5

Chapter 4 Domain Integrals 4.1-1

4.1 Introduction ... 4.1-1

4.2 Background ... 4.2-1

4.2.1 Local Energy Release Rates 4.2-1

4.2.2 Domain Integral Formulation 4.2-2

4.2.3 Domain Form of the J-Integral: Discussion 4.2-4

4.3 Numerical Procedures .. 4.3-1

4.4

4.3.1

4.3.2

4.3.3

4.3.4

4.3.5

4.3.6

Commands for Domain Integrals

Definition of the q-Function 4.3-1

Volume Integrals .. 4.3-1

Crack Face Traction Integral 4.3-2
Crack Front Nodes .. 4.3-3

Computation of Aq ... 4.3-4

Output From Computations 4.3-4

.................................... 4.4-1

V

4.4.1

4.4.2

4.4.3

4.4.4

4.4.5

4.4.6

4.4.7

4.4.8

4.4.9

4.4.10

4.4.11

4.4.12

4.4.13

4.4.14

Outline of Process ... 4.4-1

Input Error Correction ... 4.4-1

Components of a Domain Definition 4.4-1

Initiating a Domain Definition 4.4-2

Crack Plane Orientation 4.4-2

Symmetric Option ... 4.4-2

Crack Front Nodes .. 4.4-4

Specification of q-Values 4.4--4

Printing Options .. 4.4-9

Integration Order ... 4.4-9

Face Loading ... 4.4-9

Domain Verification .. 4.4-10

Debugging Domain Computations 4.4-10

Complete Examples .. 4.4-10

Chapter 5 Crack Growth Procedures 5.1-1

5.1 Introduction ... 5.1-1

5.2 Crack Growth by Element Extinction 5.2-1

5.2.1 Damage Criteria .. 5.2-1

5.2.2 General Input Commands 5.2-2

5.2.3 Damage Criteria Commands 5.2-3
5.2.4 Automatic Load Reduction 5.2-3

5.2.5 Extinction Algorithm .. 5.2-4
5.2.6 Release Models for Element Forces 5.2-5

5.2.7 Meshing Restrictions .. 5.2-7

5.3 Crack Growth by Node Release 5.3-1

5.3.1 Geometry Requirements 5.3-1

5.3.2 Input Commands .. 5.3-2
5.3.3 Release Models for Reaction Forces 5.3-5

5.3.4 Node Release Algorithm 5.3-7

5.3.5 Analysis Guidelines ... 5.3-8

Chapter 6

6.2.1

6.2.2

6.2.3

6.2.4

Contact Procedures 6.1-1

6.1 Introduction ... 6.1-1

6.2 Numerical Procedures .. 6.2-1

Overview of Penalty Method 6.2-1
Contact Detection/Calculation 6.2-2

Penetration of Multiple Contact Surfaces 6.2-5

Parallel Implementation 6.2-5

6.3 Commands for Contact ... 6.3-1

6.3.1

6.3.2

6.3.3

6.3.4

6.3.5

Outline of Process ... 6.3-1

Initiating Contact Definition 6.3-1

Description of Contact Surfaces 6.3-1

Utility Commands ... 6.3-5

Notes on Multiple Contacting Surfaces 6.3-5

vi

6.3.6 CompleteExamples ... 6.3-5

Tips for AnalysesUsing Rigid Contact 6.4-1

ExampleAnalysesUsing Contact 6.5-1
6.5.1 Rolling of a Metal Bar ... 6.5-1
6.5.2 Crushing of a Pipe ... 6.5-1
6.5.3 CrackClosurein a Pin-LoadedC(T) Specimen 6.5-3

Appendix A Patran Results File Formats A.1

Appendix B References ... B.1

Appendix C Patran-to-WARP3D Translator C.1

Appendix D Tips on Modeling Fracture Specimens D.1

vii

List of Figures

Figure No.

1.1

1.2

1.3

1.4

2.1

2.2

2.3

2.4

2.5

3.1

3.2

3.3

3.4

3.5

3.6

3.7

4.1

4.2

4.3

4.4

4.5

4.6

Page

Finite element model of pre-crack CVN specimen for illustrative
analysis ... 1.2-2

Definition of initial and current (deformed) coafigurations. Equations of

motion are written on the deformed configuration 1.4-1

Illustration of Newton's method for a static ar.alysis 1.6-2

Motion of body using polar decomposition 1.9-2

Example of piecewise-linear stress-strain curve 2.2-2

Example of local coordinates for constraint specification 2.7-2

Strain values for output ... 2.11-2

Stress values for output ... 2.11-3

Column numbers for strain-stress results in Fatran nodal data files 2.11-5

Local node ordering for the 8-node isoparametric element "13disop."

Isoparametric coordinates for the element nodes and Gauss points
are listed .. 3.1-2

Face numbers for applying tractions to the 8-node isoparametric element

"13disop." .. 3.1-5

Uniaxial (tensile) stress-strain curve for the "deformation"

plasticity model .. 3.2-2

Uniaxial (tensile) stress-strain curve for the "bihnear" plasticity
material model .. 3.3-2

Mises yield surface on principal stress space 3.3-4

Stress recovery procedure for bilinear Mises material model 3.3-8

Power-law form of the inviscid uniaxial (tensile) stress-strain

curve for the "raises" plasticity material mode- 3.4-2

Local J-integral in 3-D .. 4.2-2

Finite volume for use in Domain Integral forn.ulation 4.2-3

Variation of weight function, q, over volume a', crack front 4.2-4

Typical blunt-tip model employed in finite'-strain analyses 4.3-3

Example crack front to illustrate front nodes specification 4.4-5

Concept of rings used in automatic domain generation 4.4-6

vii

4.7

5.1

5.2

5.3

5.4

5.5

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

6.10

6.11

6.12

6.13

6.14

A.1

A.2

A.3

A.4

Typesof q-functions available for automatic domain generation 4.4-7

Traction-Separation Model for Release of Extinct Element Forces 5.2-5

Topological Restrictions on Meshes for Element Extinction 5.2-6

Example Crack for Node Release Crack Growth 5.3-2

Computation of Crack Tip Opening Angles 5.3-3

Traction-Separation Model for Release of Nodal Forces 5.3-7

Illustration of Penalty method .. 6.2-2

Contact Detection for a Rectangular Plane 6.2-3

Contact Detection for a Cylinder 6.2-4

Nodes Penetrating Multiple Contact Surfaces 6.2-5

Algorithm for Treating Nodes Which Penetrate Multiple Contact Surfaces 6.2-6

Definition of Rectangular Contact Surface 6.3-2

Example of Cylindrical Contact Surface 6.3-4

Overlapping Corners ... 6.3-6

Acceptable and Unacceptable Corner Definitions 6.3-6

Mesh for Rolling a Metal Bar ... 6.5-1

Deformed Shapes From Rolling of a Metal Bar 6.5-2

Deformed Shapes From Crushing of a Pipe 6.5-3

Mesh for Pin-Loaded (CT) Analysis 6.5-4

Deformed Shapes for Pin-Loaded C(T) Analysis 6.5-5

Fortran program to read Patran binary file of nodal strain or stress
results ... A.2

Fortran program to read Patran binary file of nodal displacements,
velocities, accelerations or internal forces A.3

Fortran program to read Patran ASCII file of nodal strain or
stress results ... A.4

Fortran program to read Patran ASCII file of nodal displacements,
velocities, accelerations, or internal forces A.5

°.°

VIII

m

Chapter 1

Introduction

1.1 What is WARP3D?

This manual describes commands and theoretical background material necessary to use
the WARP3D finite element code. WARP3D is under continuing development as a research

code for the solution of very large-scale, 3-D solid models subjected to static and dynamic

loads. Specific features in the code oriented toward the investigation of ductile fracture in
metals include a robust finite strain formulation, a general J-integral computation facility

(with inertia, face loading, thermal loading), very general 3-D element extinction and node

release facilities to model crack growth, nonlinear material models including viscoplastic

effects, and the Gurson-Tvergaard dilatant plasticity model for void growth.

The nonlinear, dynamic equilibrium equations are solved using an incremental-itera-

tive, implicit formulation with full Newton iterations to eliminate residual nodal forces.

Time history integration of the nonlinear equations of motion is accomplished with New-

mark's fl method. A central feature of WARP3D involves the use of a linear-preconditioned
conjugate gradient (LPCG) solver implemented in an element-by-element format to re-

place a conventional direct linear equation solver. This software architecture dramatically
reduces both the memory requirements and CPU time for very large, nonlinear solid
models since formation of the assembled (dynamic) stiffness matrix is avoided. Analyses

thus exhibit the numerical stability for large time (load) steps provided by the implicit for-

mulation coupled with the low memory requirements characteristic of an explicit code. In
addition to the much lower memory requirements of the LPCG solver, the CPU time re-

quired for solution of the linear equations during each Newton iteration is generally one-
half or less of the CPU time required for a sparse, direct solver. All other computational as-

pects of the code (element stiffnesses, element strains, stress updating, element internal
forces) are implemented in the element-by-element, blocked architecture. This greatly im-

proves vectorization of the code on uni-processor hardware and enables straightforward
parallel-vector processing of element blocks on multi-processor hardware (see Carey and

Jiang [11], Flanagan and Taylor [25], Hughes, Ferencz, and Hallquist [43], Healy, Pecknold
and Dodds [33] for detailed discussions of blocking strategies).

For models which prove difficult to analyze with the LPCG solver due to poor condition-

ing, e.g., thin shell structures modeled with solid elements, WARP3D provides a family of
very efficient, sparse matrix solvers based on multi-minimum degree re-ordering of the

equations. The sparse solvers dramatically reduce both memory and CPU times required
for solution of the linearized equations compared to a traditional profile based solver; fac-
tors of 5-15 reduction in memory and CPU time are routinely found. Moreover, the sparse

solver becomes very competitive with the LPCG solver on Unix workstations which have

slow memory subsystems (relative to their floating point speeds and to the memory systems

on Cray computers, see McCalpin [[59]). The LPCG solver performs far fewer floating point
operations to obtain a solution but must repeatedly cycle over element matrices hundreds-
to-thousands of times which increases the relative importance of memory access times. To

Numbers in [] indicate references listed in Appendix B.

Chapter 1 1.1-1 Introduction

User'sGuide_ WARP3D What is WARP3D?

reach the maximum possible performance, WARP3D invokes sparse solvers especially
tuned for each hardware platform. These solvers are usually provided in numerical li-

braries by the computer vendor. A "generic" sparse solver is available in all platforms to
maintain portability.

Research continues to focus on the application of nonlinear pre-conditioned conjugate
gradient (NLPCG) solvers for solution of large-scale, 3-D finite element models (see for ex-

ample Biffie [7], [8] [9], Hughes, Ferencz, and Hallquist [43]). The JAC codes of Biffie [8]

[9] employ NLPCG solvers for the analysis of large, quasi-static solid models. Experience

with these codes quickly points out the dominant role played by the relative efficiency of
numerical implementations for constitutive models to update stresses. In contrast to the

LPCG approach during which stresses are updated outside the linear equation solving pro-
cess, the material state requires updating inside each iteration of each load (time) step in

the NLPCG approach. The number of NLPCG iterations per step can easily exceed 1000

for even moderate size problems. For simple constitutive models that may be fully vecto-

rized, e.g., rate-independent Mises plasticity with a constant hardening, the NLPCG ap-
proach has the potential to be very robust and computationally efficient. However, for the

increasingly complex nonlinear constitutive models employed in modeling ductile fracture,
for example, the stress update routines become very difficult to vectorize and to date are

partially vectorized (these models require multi-levels of local Newton solutions to update
material state variables). Consequently, the potential benefits offered by NLPCG

compared to LPCG are diminished severely. The architecture of WARP3D is designed to
accommodate the NLPCG approach in the future should that evolution path for the code
become advantageous.

Using WARP3D with the current LPCG strategy, 3-D models containing 30,000-50,000
elements are routinely analyzed on supercomputers (Crays). Models with 8,000 8-node

brick elements fit in main memory on 64 MB desktop workstations. They solve with dra-

matically reduced elapsed times compared to commercial software since no spilling to disk

occurs during equation solving coupled with the generally better CPU efficiency of the
LPCG solver relative to a conventional direct solver.

WARP3D executes in batch and interactive modes. Traditional batch mode execution

is most useful for large analyses on supercomputers which enforce job queuing policies. On

Unix workstations, the code is often executed in backgrou_ d (&) mode for long jobs and then
interactively during an analysis restart to obtain selected output. Options exist to write in-

formation files describing the solution status at completion of each Newton iteration during
long analyses executed in batch mode.

WARP3D takes input data from a variety of sources under control of the user. A Patran-

to-WARP3D translator program (patwarp) is also available to convert a Patran neutral file

for the model into a WARP3D input file. Input commands t _define the model, loading histo-

ry, solution parameters, compute and output requests t_ave a format-free, English-like
structure. Input files may include extensive user comments and thus are generally self-doc-
umenting. Output consists of traditional printed displacements, strains, stresses, etc. in

addition to nodal results files in standard Patran format (binary or ascii) written directly
by WARP3D. A convenient restart capability provides the facility to segment a long job
over multiple runs and to create analysis recovery files in the event of hardware failures

or should the solution not converge.

This manual is organized as follows. The remainder of Chapter 1 provides an overview
of WARP3D through discussion of an example problem, and background material on the

formulation and solution of the governing equations. Chapter 2 describes the commands
to define the finite element model, loading history, nonlinear/dynamic solution parameters,

Chapter I 1.1-2 Introduction

User'sGuidew WARP3D

compute and output commands. Chapter 3 provides a detailed description of the currently
available finite elements and material models. Chapter 4 describes the procedures and

commands available to compute J-integrals using domain integral techniques. Chapter 5
discusses the procedures and commands to model crack growth. The appendices provide
additional details such as the format of nodal results files generated for use in Patran.

A Note About Physical Units

WARP3D does not provide facilities for units conversions. Users are required to specify con-

sistent physical units for all quantities defining the finite element model and loading.

Chapter 1 1.1-3 Introduction

User'sGuide--WARP3D Illustrative Problem _

1.2 Illustrative Problem

This section describes the nonlinear analysis of a pre--cracked Charpy-V-Notch (CVN)

specimen subjected to impact loading typical of that experienced in a standard, constant

velocity test. Figure 1.1 shows the finite element model, dimensions, boundary conditions
and loading history. In this example, the 3-D model has one-layer of elements in the thick-

ness direction with plane-strain constraints (w=O) imposed on all nodes. The model has
2008 nodes and 916 elements (8-node bricks with _ modification). The model was devel-

oped and analyzed to support an investigation of crack tip inertia and viscoplastic effects
on the near-tip stress fields which drive cleavage fracture in ferritic materials.

The analysis uses the small-strain kinematic formulation with viscoplastic material be-
havior. Rate-dependent properties characteristic of A533B steel at 100°C are specified.

The uniaxial (tensile) inviscid response follows a power-law hardening model (n=10) after

yield at a0; the viscoplastic response follows a power-law model with an exponent of 35 and

a reference strain rate of 1/s. Displacements imposed at the hammer impact point increase
from zero as indicated in the figure to generate a constant velocity loading of 120 in/s after

an elapsed time of 5/_s. The analysis covers 200 _s duration in 400 steps with a constant
time increment of 0.5/_s. The remainder of this section describes features of the WARP3D

input to define the model, loading history, request computations and output, and to com-
pute J-integrals shortly after impact.

Input for the model begins with a structure command and material definitions.

c

c example cvn analysis with WARP

c

c

structure cvn

c

c

material a533b

properties mises e 30000 nu 0.3 yld_pt 60 n_power i0,

ref_eps 1.0 m__power 35.0 rho 7.29275e-07

WARP3D commands are format free and may begin _mywhere on the line. One or more

blanks separate data items. A 'c' in column 1 denotes a comment line and is ignored by the

input translator. A comma (,) at the end of a line indica;es that the input for that command

continues on the next line. In the above sequence, we assign a convenient name for the prob-
lem (cvn) which appears on all printed output and forms the initial part of some output file

names. We define a material named a533b (any convenient id) and the 'type' of constitutive
model as raises. Up to 10 materials may be defined as above for subsequent assignment to

elements. User assignable properties for the model are specified as shown, with a keyword

label followed by a data value. Keywords have easily i2Lterpreted names and may be given
in any order. Decimal points are optional and may be)mitted if not needed to specify the

fractional part of a number. Some keywords specify 'qo_Jcal" data values; appearance of the
keyword in the input sets the corresponding property value .true. Property rho denotes the

mass density of the material.

Following the structure id and material definitions, the structure sizes and nodal coor-

dinates are specified as illustrated below:

c

number of nodes 2002

number of elements 916

c

Chapter 1 1.2-1 Introduction

User'sGuide--WARP3D Illustrative Problem

(22.50

A(t) 2002 nodes, 916 elements (8-node w/B-bar)

X

Material Properties

E = 30,000 ksi

v = 0.3

a 0 = 60 ksi (inviscid)

p = 7.29275 x 10 -7 kip - s2/in

n = 10 (inviscid power - law hardening)

m = 35 (viscoplastic power)

eref = 1 in/in/s (reference strain rate)

e"
.m
v

E

.--

a

c-

O
0_

2:}

O
_J

0.015

0.012

0.009

O.006

A = 120 in/s
O.OOJ

O.000
0 50 100 f50 200

Time (gs)

FIG. 1.1--Pre-eraeked Charpy specimen used in illustrative problem.

Chapter I 1.2-2 Introduction

User'sGuide-- WARP3D Illustrative Problem

*echo off

coordinates

1 .I00900006E+01

2 .I08300006E+01

-.196999982E+00

-.196999982E+00

.000000000E+00

.000000000E+00

The model sizes are required to properly allocate space for internal data arrays. The order
of commands to define the sizes is immaterial, and a command of the form number of nodes

2002 elements 916 applies as well. Nodes and elements must be numbered sequentially and

must not have "holes" in the numbering. The *echo offsuppresses data echo of commands

as read from the current input file. Various * commands may be specified at any point in

the input stream to control the echo, switch to another file for input, etc. Coordinates for
nodes are defined in the global X-Y-Z system with the origin located at a convenient loca-

tion. Coordinates for nodes may be specified any number of times; the last specified set of

coordinates are retained for analysis. The coordinates here were translated from a Patran

neutral file for the model by the patwarp program and thus have the E format shown.

The 'incidences' define the connectivity of each element node to the corresponding struc-
ture node.

c

incidences

1 5 1 4 8 6 2 3 7

2 8 4 I0 12 7 3 9 ii

3 12 I0 14 16 !i 9 13 15

4 16 14 18 20 15 13 17 19

5 20 18 22 24 19 17 21 23

6 24 22 26 28 23 21 25 27

Chapter 3 describes the ordering of nodes on the element and the relationship of element
nodes to the ordering of Gauss points. Elements may be entered in any order; the last speci-

fied set of incidences for the element applies in the analysis. The input translators perform
extensive checks on the specified incidences to insure ;here are no gross errors (e.g., nodes
with no elements attached).

The type of each element and the properties for each element are specified next.

c
elements

1-916 type 13disop linear bbar material a533b order 2x2x2

In this example, all elements are the 8-node isoparmnetric (13disop) with a small-strain
kinematic formulation (linear). The]_ modifications ".o prevent locking under plastic de-

formation are requested (bbar, a logical property). Th_ previously defined material a533b

is associated with these elements and the standard 2_.2x2 Gauss integration is requested.
Other element properties available invoke various output options. All elements have the

same material and properties in this example. When this is not the case, any number of

similar input lines may be defined to specify the properties. The integerlist construction

(1-916 above) is convenient and may be used anywhere a list of integers is needed in the

input stream. A more general example of an integerlist is: 1-400 by 2, 800-600 by -2,
3000-6000 492 496 ...

Each element in the model must be assigned to a _block" for computation. Blocking is

required to support optimum vector/parallel operations on supercomputers and is retained

Chapter I 1.2-3 Introduction

User'sGuide--WARP3D Illustrative Problem

for analyses conducted on Unix workstations. All elements in a block must be the same type
(e.g. 13disop), have the same material, the same type of kinematic formulation, the same

values of some element properties (e.g., integration order, _) and must not be connected to
a common node in the model. This last restriction does not apply for analyses conducted on

scalar computers (most Unix workstations) unless the conjugate gradient solver uses the

Hughes-Winget preconditioner. The maximum number of elements per block varies with
the computer hardware. On Crays, the block size is normally 128 to accommodate vector

registers of 128 words in length. On workstations, the cache memory size dictates an opti-

mum block size (usually 32-64).

In this example, the block size is 32; the block number is specified followed by the num-
ber of elements in the block and the first element in the block. Elements appearing in a

block must be sequentially numbered with no holes. Thepatwarp program which converts
a Patran neutral file to a WARP3D input file performs automatic blocking of the elements

using a red-black algorithm. The input processors in WARP3D perform exhaustive checks

to verify that the rules for blocking assignments are satisfied.

c

blocking

1 32 1

2 32 33

3 32 65
7 32 193

28 32 865

29 20 897

Nodal constraints in this analysis enforce the plane-strain conditions, the symmetry

conditions (u=O) on the crack plane, the v=O condition at the top, right roller support and

the imposed loading to simulate a constant velocity response. A portion of the constraint
input is shown below. The specified constraints are the incremental displacements imposed

over the model during each load (time) step. Constraints may be re-defined as necessary
between load steps. When modified, all constraints must again be specified. Nodes 499 and
503 in this model are the two nodes at the hammer impact point in the thickness direction.

The constraints shown here are applied during load steps 1 and 2. Then a new set of

constraints is defined for application in steps 3, 4 with the imposed increments at nodes 499
and 503 doubled in value. Similarly, during steps 5, 6 the v increment at nodes 499, 500

is 3.0E-05; during steps 7, 8 the v increment at nodes 499, 500 is 4.0E-05; and finally dur-

ing steps 9-400 the v increment at nodes 499, 500 is 6.0E-05. The load point velocity (120
in�s) remains constant over steps 9-400 and is simply the imposed displacement increment

/ At (in this case 6.0E-0/5.5E-06). The slow increase in load point velocity minimizes spuri-

ous oscillations in the response.

constraints

1 w 0.0

2 w 0.0

3 w 0.0

4 w 0.0

5 w 0.0

6 w 0.0

c

c

IntroductionChapter 1 1.2-4

User's Guide _ WARP3D Illustrative Problem _

499 v l.Oe-5

503 v l. Oe-5

Loads may be applied to the nodes and elements of a model. Element loads, which are

dependent on the type of finite element, are converted to equivalent nodal loads by element

processing routines. Nodal loads and element loads are grouped together to define loading

patterns. The loading patterns define the spatial variation and reference amplitudes of
loads on a model. Examples of loading patterns include dead load, an internal pressure,

simple bending of a component or specified nodal-element temperatures.

A nonlinear loading condition is declared using previously defined patterns. The term

dynamic may be used as a synonym for nonlinear if desired. A nonlinear/dynamic loading
consists of a sequential number of load steps. An incremental-iterative solution is obtained

for each load step. For dynamic analyses, a load step is the same as a time step. Each load
step may consist of loading patterns combined with scalar multipliers. The scaled values

of nodal forces (nodal loads and resulting equivalent nodal loads) for the patterns are ap-

plied as the new incremental load to the model during the step. Loading commands for this
example are shown below.

c

loading null
nodal loads

401 force__y 0

c

loading disp_ctrl

dynamic

step 1-2 null 1.0

step 3-4 null 2.0

step 5-6 null 3.0

step 7-8 null 4.0

step 9-400 null 6.0

In this analysis of the CVN specimen, no real "loadings" are needed since the model is

loaded by enforced displacements. Nevertheless, a "dummy" loading pattern must be de-

fined to satisfy the syntax requirements for the dynamic loading. Here, the dummy loading

is assigned the id "null." The dynamic loading is assigned the id "disp_ctrl." All 400 steps
are defined above although this is not required; additional steps may be defined later dur-

ing the analysis. The scalar multipliers assigned to the pattern (1.0, 2.0, 3.0, 4.0, 6.0) above
refer to the relative change in the magnitude of displacement increments. For displacement

control loading, these multipliers come into use during extrapolation of displacements from
step n to n+l for accelerating convergence of the New_on iterations.

The user may specify values for a number of nonlinear/dynamic parameters that control

the solution procedures In this example, we specify

c

dynamic analysis parameters

solution technique direct sparse sgi
maximum iterations 5

convergence test norm residual tol 0.0005

nonconvergent solution stop

time step 0.5e-6

extrapolate on

adaptive solution on

Chapter 1 1.2-5 Introduction

User's Guide -- WARP3D Illustrative Problem

material messages off

batch messages on

c

A few keywords describing the option are given followed by a required value(s). Some pa-

rameters have numerical values while others have on, of/values and others just end with

a keyword. Most parameters have suitable default values. A brief explanation of each pa-

rameter speciiied above follows:

• The linear equation solver isspecifiedas directsparse--an in-memory direct solverthat

employs sparse matrix technology to reorder the equations for very efficientdecomposi-
tion.This solver ise_icient for 2-D type models, such as this example, and for moderate

size 3-n models. The primary equation solverfor large 3-n models uses the linear,pre-

conditioned conjugate gradient algorithm and isrequested by the option lpcg rather than

direct.

• The maximum number of Newton iterations to eliminate residual forces in each step is set

to 5.

• The Newton convergence test specifies a tolerance of 0.05% on the Euclidean norm of the
residual forces relative to the Euclidean norm of the current (total) load vector. Solutions

that fail to converge cause termination of the analysis unless the default stop value for the

nonconvergent solutions is changed to continue.

• The time step is 5 _s for use in Newmark's fl method to integrate the dynamic equilibrium

equations.

• extrapolate on invokes a nonlinear solution option which imposes the scaled displacement
increment computed for step n on the model to start the solution for step n+l. This option
greatly accelerates the convergence of Newton iterations for displacement controlled load-

ing.

• The nonlinear adaptive strategy is requested; load steps are automatically sub-increm-
ented and re-solved when the specified limit on the number of Newton iterations is reached

without convergence. Two levels of adaptivity are available which subdivide, at most, a
user specified step into 16 sub-steps. Adaptive solutions that do not converge are termi-
nated and a restart file written.

• Material models (by default) issue messages which notify of first yielding, reversed yield-
ing, and other state changes. These messages are suppressed with material messages off.

• This analysis is executed in "batch" mode (&) on a workstation. The batch messages on pa-
rameter requests that WARP3D write a solution status file following each Newton itera-
tion. The file names are wm_xxxx_yy where xxxx denotes the step number and yy denote
the Newton iteration. These files provide information about convergence of the solution.

The model, loading history and solution parameters are now defined. Commands to re-

quest an analysis and output of results are given. For the first 10 load steps the commands

are:

c

compute displacements

*echo off

*input from 'forty'

*echo on

c

compute displacements

c

echo off

*input from 'sixty'

*echo on

c

compute displacements

c

for loading disp_ctrl for step 1 2

for loading disp_ctrl for step 3 4

for loading disp_ctrl for step 5 6

1.2-6 Introduction
Chapter I

User's Guide -- WARP3D Illustrative Problem --

for loading disp_ctrl for step 7 8

*echo off

*input from 'eighty'

*echo on

c

compute displacements

c

*echo off

*input from 'one-twenty'

*echo on

c

compute displacements for loading dis__ctrl for step 9 i0
c

save to file 'cvn_step_lO'

c

output displacements node 798

output velocity node 798

output wide eformat strains elements 20-40

output wide efoz-mat stresses elements 20-40

output accelerations for elements 100-200 by 2

output internal_forces 109,110

output internal_forces 499,503

output patran binary displ stress strains velocity accelerations

*input from 'domain define'

stop

Here, we request computation of results for load steps 1-2 and then switch the input stream
to a file named forty. This file contains an entire new set of constraints for the model (the

incremental displacements imposed on nodes 499, 503 are increased to 2.0e-5 from

1.0e-5). The first few and last few lines of the file forty are

constraints

1 w 0.0

2 w 0.0

3 w 0.0

2002 w 0.0

c

499 v 2.0e-5

503 v 2.0e-5

The * commands turn off the data echo while the new constraints are being read and then

resume the data echo (this is just for convenience and may be omitted). The *input com-

mand specifies the file name for input. We could just as easily have placed the contents of
file forty in the current input file. The WARP3D input processors sense when the end-of-file

condition on forty occurs and automatically resume reading from the previous input

stream. This sequence of commands is repeated to continue the analysis through load step

10, and in the process ramp the imposed load point velocity to 120 in/s.

Following completion of the analysis for load step 10, we issue a save to file.., command

which forces creation of an analysis restart file (sequential, binary) named cvn_step_lO.

The choice of file name resides with the user. This file enables resumption of the analysis
at load step 11 in a future program execution (as illustrated subsequently).

Several output commands are defined to request printing (to the current output device)
of nodal and element values (displacements, velocities, accelerations, strains, stresses).

These results are displayed in tabular form with appropriate page and column headers.

The internal forces are reactions at constrained nodal dof. The outputpatran ... command

Chapter 1 1.2-7 Introduction

User'sGuide-- WARP3D Illustrative Problem

requests creation of binary (ascii is optional) files of nodal values written in the required

format for direct post-processing by Patran. These files have the names pbd#####, for ex-

ample, wherepbd denotes 'patran binary displacements' and ##### indicates the load step
number. Appendix A defines the format of Patran results files created by WARP3D.

Finally, an *inp ut command is specified to read more input from the file domain_define.

This file contains the input commands

c

domain one

symmetric

front nodes 1975 1977 linear

normal plane nx 1 ny 0 nz 0

q-values automatic rings 31-35

print totals

function type d

compute domain integral

c

_I_d7_ q Node
1977

We define one "domain" for J-integral computation using the results for load step 10.

A domain is defined by specifying an "id" (one in this example for output headers), the nodes

in the domain along the crack front, the q-function interpolation order along the front, the

orientation of the crack plane relative to the global coordinate system, the number and

types of "rings" for J-evaluation and output options. The rings 31-35 option requests that
the first J-value be computed using elements in the 31 st ring of elements enclosing the

crack front. J-values are then computed over rings 32-35. Values for each ring are printed
and statistics shown to assess the path (domain) independence of the values. The symmetric

parameter causes the code to double J-values prior to printing.

In this (effectively) 2-D model, we request computation of a "through-thickness" aver-

age J-value by specifying function type d. In general 3-D models, we specify the sequence
domain ... compute domain integral at each point on the crack front where J-values are

required. WARP3D automatically determines that the analysis is dynamic and includes
the inertia terms in J and crack face loadings if they are present as well.

The input file ends with a stop command which terminates program execution. Restart

files must be explicitly requested with the "save" command.

To restart the analysis at load step 11 in a new execution of the program, the input file

for this example begins with the commands

c

retrieve from file 'cvn_step_lO'

c

output displacements 100-200

c

dynamic analysis parameters

maximum iterations 4

convergence test norm residual tol

material messages on

batch messages off

c

compute displacements for

save to file 'cvn_step_20'

c

output displacements node 798

output velocity node 798

0.001

loading disp ctrl for step 11-20

Chapter 1 1.2-8 Introduction

User'sGuide-- WARP3D Illustrative Problem _

output wide eformat strains elements ...

The retrieve command must be the first non-comment line in the restart file. WARP3D

reads this file to restore all internal variables to their values at completion of load step 10.
Another output command requests more results for step 10 and then several analysis pa-

rameters are modified. The analysis for steps 11-20 is requested and the computations are

finished, another restart file is created, output commands to print results at step 20 issued,
etc.

Chapter 1 1.2-9 Introduction

User'sGuideE WARP3D Manual Conventions

1.3 Manual Conventions

The input translators for WARP provide a problem oriented language command structure

to simply specification of model and solution parameters. This section describes the conven-
tions and notation employed throughout the manual to explain commands.

The appearance within a WARP command of a descriptor of the form

< integer >

implies that the user is to enter an item of data within that position in the statement of the

class described by the descriptor (in the above example an integer). The command

number of nodes < integer >

implies that the word nodes is to be followed by an integer, such as 1000 or 6870, and that

the statement entered by the user as input data should be of the form

number of nodes 6870

The following are definitions of most of the descriptors used within the language. Those not

described below are explained when they first occur in the text.

< integer > a series of digits optionally preceded by a plus or minus sign. Examples are

121, +300, -410.

< real > a series of digits with a decimal point included, or series of digits with a deci-

mal point followed by an exponential indicating a power of 10. Real numbers

may be optionally signed. Examples are 1.0, -2.5, 4.3e-01.

< number > is either a < real > or an < integer >. The input translator performs mode con-

version as needed for internal storage.

< label > is a series of letters and digits. The sequence must begin with a letter. Input

translators also accept the character underbar, _, as a valid letter. Labels

may have the form big_cylinder, for example, to give the appearance of mul-

tiple words for readability.

< string > is any textual information enclosed in apostrophes (') or quotes ('). An exam-

ple is 'this is a string'.

< list > is the notation used to indicate a sequence of positive integer values -- usual-

ly node and element numbers. Lists generally contain two forms of data that

may be intermixed with the same list. The first form of data is a series of inte-

gers optionally separated by commas. An example is 1, 3, 6, 10, 12. The se-
cond common form of a list implies a consecutive sequence of integers and

consists of two integers separated by a hyphen. An example is 1-10, which

implies all integers in the sequence i through 10. An extension of this form
implies a constant increment, e.g., 1-10 by 2 implies 1, 3, 5, 7, 9. A third form,

all, is sometimes permitted, and implies all physically meaningful integers.
The forms of lists are often combined as in ... nodes 1-100 by 3, 200-300,

500-300 by -3.

Input to WARP appears as a sequence of English-like commands. Many of the words

or phrases in these commands are optional and are permitted for readability or to specify
options with a command. In the definition of each command, underlined words are required

for proper operation of the input translators. If a portion of a word is underlined, only the
underlined portion is required input. Items such as <integer> shown in the command defini-

Chapter 1 1.3-1 Introduction

User'sGuide-- WARP3D Manual Conventions _

tions are not underlined but must always be replaced by en item of the specified class. For

example, the command phrase defined by

number (of) nodes < integer >

can be shortened to

numb of node i0

ifthe user so desires.

In many instances,more than one word isacceptablein a _ven positionwithin a com-
mand. The choices are listed one above the other in the command definition. The command

definition

i._lis.___cements

c°m_ute I domain I

indicates that each of the following commands are acceptable

compute domain

compute displacements

comp displa

Optional words and phrases are enclosed with parentheses, (). In some commands, items
may be repeated and/or multiple phrases may be combined on one data line. This is indi-

cated in the command definition by enclosing the repeatable entries within brackets, [].
The command

< integer > Y < number> (,
Z

implies that the following sequences are valid:

1 x i0 y I0 z 15.3

2 x 15 z 30

30 z -42.5

In order to be more descriptive within the command definitions, actual data items

(those denoted with <> in the definition) are sometimes described in terms of their physical
meaning and followed by the type or class of data item which can be used in the command.

For example the command,

structure < name of structure: label >

implies that the data item following the word structure is the name of the structure and
must a descriptor of type < label >. Examples of acceptab e commands are

structure cylinder
struct big_block

while

structure la

is not acceptable since the name of the structure is not a label (labels must begin with a let-
ter).

Chapter 1 1.3-2 Introduction

User'sGuide_ WARP3D Manual Conventions

Continuation Lines

A comma (,) placed at the end of a line causes the subsequent data line to be considered a

logical continuation of the current line. There is no limit on the number of continuation
lines. Continuation can be invoked at any point in any command.

Comment Lines

Comments may be placed in the input following a Fortran style. The letter 'c' or 'C' appear-

ing in physical column 1 of the data line marks it as a comment line. The line is read and

(possibly) echoed by the input translator. The content is ignored and the next data line read.

Line Termination

Line termination is accomplished in one of three ways. First, the last column examined by

the input translators is column 72. Secondly, after encountering the first data item on a
card, the translators count blanks between data items. If 40 successive blanks are found,

the remainder of the line is assumed blank. Finally, a $ indicates an end of line. Space fol-

lowing the $ is ignored by the input translators and is often used for short comments.

Chapter I 1.3-3 Introduction

User'sGuidem WARP3D Equations of Motion _

1.4 Nonlinear Equations of Motion

The structure occupies the configuration B o at time t = 0 and evolves through time to the

deformed configuration B at time t. In the B 0 configuration, the structure is undeformed
and at rest. In reaching the deformed configuration, the structure may displace in any man-
ner, including simple rigid body translation or rotation in the absence of true deformation.

This situation is illustrated in Fig. 1.2. The position vector X identifies a point in the unde-

formed configuration and x denotes the position vector of the same point in the deformed
(current) configuration. The vector d is the displacement vector that takes the point from

the initial to the deformed configuration. The coordinates of the structure in the reference
configuration represent the geometry interpolated from the parametric coordinates in the

isoparametric formulation. The nonlinear implementation of the finite element method in

WARP3D employs a continuously updated formulatior_ naturally suited for solids with only

translational dof at the nodes. The expression of virtual work defining equilibrium and the

equations of motion are defined and solved on the current, B, configuration. Throughout
the deformation history of the structure, this choice of reference configuration remains in
effect.

initial (undeformed) configuration

Y,Y,y d

ration

X,X,x

FIG. 1.2--Definition of initial and current (deformed) configurations. Equations
of motion are written on the deformed configuration.

In the remainder of this section, the equations of motion are derived. Methods for
solution of the resulting nonlinear algebraic equations are described in subsequent sections

and followed by descriptions of the specific finite element formulations and the adopted for-
mulation to model finite strains and rotations.

The weak formulation of momentum balance e tuations (virtual work) expressed in
the current configuration is given by

_,TadV- (_dTfdV- OdTpi = 0
i=1

V V

(1.1)

Chapter I 1.4-1 Introduction

EquationsofMotion User'sGuide-- WARP3D

where V denotes the current volume, 6e and a are the virtual rate of deformation vector and

the Cauchy stress vector, fis the body force vector per unit volume in the deformed configu-

ration, and each Pi is a 3 x 1 vector of external forces acting at m discrete points (see Mal-
vern [57], Marsden and Hughes [58]). We use 6 x 1 vector forms of the symmetric tensors

for 5_ and a. The operator 6 denotes a small, arbitrary virtual variation. The virtual rate
of deformation tensor and the Cauchy stress tensor form a work conjugate pair when de-

fined on the current configuration.

External force vectors remain constant in magnitude and direction over a load step. The

nodal forces p; may comprise directly applied nodal forces and the (work) equivalent nodal
forces due to specified surface tractions applied on element faces and other body forces, e.g.,
self-weight. Inertial D'Alembert forces arising from accelerations are given by

f = - p(t (1.2)

where Q is the mass density in the deformed configuration. By including acceleration forces

in fand body forces due to self-weight in Pi, Eq. (1.1) becomes

&,TadV + 5dTpcldV = 6dTpi = 0 .
i=1

(1.3)

V V

Following standard procedures (Cook et. al [16], Hughes [44]), Eq. (1.3)transforms from

a purely continuum form to an (equivalent) finite element form as given below, beginning
with integrations over each element to define the volume integral over the structure

"'mI "mI
j=l j=l i=1

(1.4)

#elern

5" +
j=l

#elem m

_, (SuTeMeiie)j- _. Jd_p i = 0
j=l i=1

(1.5)

where u is the global nodal displacement vector, Ue is an element nodal displacement vector,

Ie is an element internal force vector, Me is an element mass matrix, and P is the global
external force vector. Subsequent sections outline procedures to compute the element inter-
nal force vector and the element mass matrix as well as the element tangent stiffness ma-

trix. The summations in Eq. (1.6) denote the global assembly process. Since the 8u are arbi-

trary in nature,

_I e =F (_Me)i_ - _) = 0 . (1.7)

After performing the assembly processes implied by the Z in Eq. (1.7), the global equation
of motions become

I+M_ =P (1.8)

The vectors have size 3 x m, where m denotes the number of structure nodes. Nonlinearity

in I arises from the element internal force vectors (geometric and/or material effects) while

P become nonlinear when tractions applied to element faces have constant orientation rela-

tive to the deformed face (e.g., pressure loads).

Introduction 1.4-2 Chapter I

User'sGuide_ WARP3D Dynamic Analysis _

1.5 Dynamic Analysis: Newmark Method

Numerical integration of the equations of motion in WARP3D is performed using a method

attributed to Newmark [69]. This approach employs a two parameter family of equations

that define the displacement, velocity, and acceleration at time tn +1 in terms of the displace-
ment increment from tn to tn+l and the kinematic state at time tn. These equations derive

from successive application of the extended mean value theorem of differential calculus.

Consider first the velocities at time tn and tn+l. Use of the extended mean value theorem
for the first derivative leads to the equation

Un+l = Un + At/i r ; //r _ [/_n , /_n+l] • (1.9)

Using the relationship

/iy = (1 - _')/_n + _//_n+l ; 0 -----7 < 1 (1.10)

Eq. (1.9) can be rewritten as

/_n+l ---- /gn + (1 -- _/)Atiin + yAtiin+ 1 • (1.11)

Equation (1.11) provides an exact result for a given time interval if the parameter _ can be

chosen correctly. Even so, the constant acceleration u y upon integration of Eq. (1.9) does
not necessarily produce the correct displacement at time tn +1 in terms of the displacement

and velocity at time tn. Accordingly, the extended mea_ value theorem for the second deriv-

ative is invoked to yield

At2_ .
Un+ 1 = Un + Arian +-'_-- fl, U_ _ [/_n, _n+l] " (1.12)

Again, a relationship having the form

_Z=(1-2fl)iin+2fl_n+l; 0 -< 2fl -< 1 (1.13)

is employed to recast Eq. (1.12) as

Un+ 1 = Un + At_n -t- (1 -- 2/]_r)At2/_n2 + flAt2iin _ 1 • (1.14)

Equation (1.14) also provides an exact for a given time interval as long as the choice of
the parameter fl proves to be correct. Of course, in general it is impossible to choose either

7 or fl correctly without knowing the solution in advance, so that the approximation in the
Newmark method lies in the choice of 7 and ft. Newmark showed that to avoid spurious

damping in linear systems, the parameter y should equal 1/2. The pertinent equations of
the Newmark method then become

Un+l ---- /_n "1- _(/_n "{" /_n+l)
(1.15)

Un+ 1 -_ U n -t- /ktlfl n _- (1 - 2_)At2_ n + _At2i_ n _1 (1.16)
2

A wide variety of values for the parameter fi are possible. For instance, setting fi equal

to zero leads to the second central difference method. ,4 choice of fi = 1/6 defines the linear

acceleration method, wherein the acceleration is assumed to vary linearly over the time

increment. The choice of fl = 1/4 produces the cornCtant average acceleration method.
Newmark demonstrated that fl -- 1/4 renders the method unconditionally stable for linear

problems; other choices must satisfy a time step const taint to maintain stability through-

Chapter I 1.5-1 Introduction

-- Dynamic Analysis User's Guide _ WARP3D

out the solution. For materially nonlinear problems, Schoeberle and Belytschko [79] estab-

lished that the use of fl = 1/4 leads to unconditional stability when nonlinear equilibrium
iterations (Newton) are performed to satisfy an energy convergence criterion, and for non-

linear elastic problems Hughes [39] found much the same situation. In WARP3D, _ = 1/4

is the default value although users can modify this value.

Use of the Newmark method leads to an implicit dynamic formulation in that the solu-

tion of a nontrivial system of equations is required to compute a displacement increment.

Assuming that _ does not equal zero, Eqs. (1.15, 1.16) are manipulated to the form

AUn+ 1 = Un+ 1 -- U n (1.17)

• _ (1 2;_)Un (1 4;_)At_ nUn+l 2_liAUn+ 1
(1.18)

_n+l--_lt 2Aun+I- 1-!-_t n (12;_)l_n
(1.19)

Equations (1.17-1.19) are substituted into the equations of motion and into the chosen it-
erative nonlinear solution algorithm. The total displacement increment for the current

time step is computed, Au n + 1, and that increment is back substituted into Eqs. (1.17-1.19)
to define the velocity and acceleration for the current estimate of the solution at time tn+l.

Introduction 1.5-2 Chapter I

User'sGuide-- WARP3D Netwon's Method

1.6 Solution of Nonlinear Equations: Newton's Method

Recalling the equation of motion, the residual load vector at any time is expressed as

R=P-I-M_ (1.20)

where P is the external load vector, I is the internal force vector, M is the mass matrix, and

u is the nodal displacement vector. The residual defines the out-of-balance force vector

that arises from nonlinear effects in I and (possibly) P computed for the current estimate

of the nodal displacements, u. An iterative solution designed to drive the residual to zero

is desired. Newton's method for nonlinear equations, illustrated in Fig. 1.3 for a static anal-

ysis, can be derived by assuming that there exists an approximate displacement state, _,

in the neighborhood of the exact solution for which a linear mapping represented by

R(u) = R(_) + dR(u) = R(_) + OR du (1.21)
Ou

is a good approximation to the residual load vector. The partial derivative in Eq. (1.21) rep-
resents the Jacobian matrix which maps the displacement vector to the residual load vec-

tor. Presumably, a better approximation, _ + du, is obtained by setting Eq. (1.21) to zero.

The differential increment of the residual load vector (the mass matrix for a given time step

is constant), is given by

dR = dP -dl - Mdii . (1.22)

The external loads are assumed to remain constant in direction and magnitude over a load

(time) step and thus dP=O (loads can change between steps). By using Eq. (1.19) to define
the differential acceleration in terms of Newmark's method and by introducing the struc-

ture tangent stiffness, we have

Mdii = fl--_Mdu , (1.23)

dI = Krdu . (1.24)

where K T denotes the tangent stiffness matrix for the structure. Equation (1.22) can then
be written in the form

where

dR = - KdTdU (1.25)

-LM (1.26)
K_ = K r +/3At 2

defines the dynamic tangent stiffness. The use of dR from Eq. (1.25) in Eq. (1.21) yields

R(u) = R(_) - Kddu (1.27)

which demonstrates that the dynamic tangent stiffne,, s is the negative of the Jacobian ma-

trix relating the residual load vector to the displacement vector:

K d= _ OR (1.28)0u "

Setting Eq. (1.27) to zero and rearranging defines

Kddu = R(_) (1.29)

W

Chapter 1 1.6-1 Introduction

Netwon'sMethod User'sGuide_ WARP3D

llell

IlPn÷lll

// lIRa+ill

j,, oRn÷1II II12÷1II

IIPnI1 / 1 III_ + 1 II

I II/nll =IIR n II II/°n+_II

1 IIIIUnII IIU,,÷l

IIRn÷_II

IIin÷11]

I I I' "- IIUII

I1 2 IIIlu3 IIUn+l n+l

FIG. 1.3---Illustration of Newton's method for a static analysis

For finite, rather than differential, increments, the approximate form of Eq. (1.29) be-

comes

d i i-1 (1.30)
KT(_Un+ 1 = Rn+ 1

where (tUin+ 1 denotes the (corrective) increment of displacement for the current iteration
of the time step which advances the solution from n to n+l and Rin+_ denotes the residual

load after the previous iteration. This residual is defined as

(1.31)Rin--+ll = Pn +1 -- //n+ 1 -- Mr2_11

or, after substitution of Eqs. (1.17-1.19), alternatively as

i-1 i-1 1 t "nn+l = _n+l - ln+l _ 2MAUtn+ll
(1.32)

where Pnd+ 1 is the applied load vector at time tn+l modified by terms associated with Eqs.
(1.17-1.19):

Pn+ld = Pn +1 + _AtMun + (1 2_/_)M/tn
(1.33)

Introduction 1.6-2 Chapter 1

User'sGuide-- WARP3D Netwon's Method _

The total change in displacement over the load step, through the current Newton itera-

tion i for the step, is obtained from the summed correct:ve displacement vectors for the cur-

rent step, i.e.,

i

= E (1.34)
h=l

with the updated estimate for the total displacements at step n+l through iteration i is

i i
Un+ 1 -_ U n -F AUn+ 1 . (1.35)

The combination of Eqs. (1.30) and (1.32) defines the basic equation driving the itera-
tive solution associated with the Newton method:

d i d i-1 1 _A- i-1

KT(_Un+I = Pn+l - I_+1 fl_t2""'_Un+l (1.36)

WARP3D employs a full Newton scheme in which the tangent stiffness, K d, is updated
before the solution ofEq. (1.36) at each iteration. Iterations continue until specified conver-

gence criteria are met or until a specified limit on iterations is reached.

The residual load vector, the dynamic tangent stiffness, and the mass matrix are com-

puted using the element computation algorithms discussed subsequently The solution of
the linear simultaneous equations, Eq. (1.36), for the iterative displacement increment is

performed by solvers discussed subsequently as well.

Convergence Criteria

Four convergence criteria are provided to support the Newton iterative solution method.

They are:

1) IIaUn+_ II -< at11(_Un+l II (1.37)

2) lIRa+ -< 52 lJPn+ (1.38)

3) m x(I i(5Un+l)kl k = 1,Neq) < 5311 1, - 5Un+l I (1.39)

4) max((R_+,)kl,k = 1,Neq) <- O4 x _ (1.40)

Tests (2) and (4) include the current reactions for ccnstrained degrees of freedom in the

total applied load P. _ denotes an average force (internal, inertial, reactions, etc.) applied
to nodes of the model (defined in section on input for convergence parameters). This makes

possible the use of these two convergence tests for models loaded only by imposed displace-

ments; otherwise P = 0.

At present there are no mechanisms to control loading in the vicinity of limit points or

to otherwise improve performance in such situations, e.g., Riks method.

Imposed Displacements and Temperatures

Non-zero imposed displacement increments and imposed temperature increments enter

the equation solving process in the following manner. First, Eq. (1.33) is rewritten in the
following form "

pd = pa + AP + _AtM, n + (l _2/fl)M, nn+l (1.41)

where AP denotes the specified increments of nodal foIces over n-*n + 1 and the increment

of work equivalent nodal forces arising from specified element loads (body forces and sur-

Chapter I 1.6-3 Introduction

Netwon'sMethod User'sGuide--WARP3D

face tractions). The incremental load vector to drive the first iteration of the Newton solu-

tion for step n + 1, denoted R 0, is then defined by

Ro = pdn+l -- Io + fl-_MAu (1.42)

where Au contains the specified, non-zero displacement increments and (optionally) the ex-

trapolated displacements from the previous load step.

The internal force vector, I(_ for this computation derives from the nodal displacements

Au and the imposed temperature increments as follows:

#elem fIo = E 6_T°°dVe
j=l

(1.43)

where the stress field a 0 is obtained through the operations

AE0 _- BAu - A_th (1.44)

0 0 _-- O n -{- e[on, A_o,...) •
(1.45)

In the above, B denotes the incremental strain-displacement operator with Aeth the speci-

fied thermal strain increment for the step. Here, C defines the constitutive operator which

updates the stresses for a specified strain increment. The operators B and C reflect the spe-
cific element formulation, finite strains-rotations if required and the appropriate material

consitutive model.

The incremental load vector defined in this manner (R 0) is then used in Eq. (1.30) to

compute the first estimate fo the displacement increment which advances the solution from
n-+n + 1,

d 1 = R0 (1.46)KT(_U n + 1

Introduction 1.6-4 Chapter 1

User'sGuidem WARP3D Linear Solvers _

1.7 Linear Equation Solvers

Solution of the linear set of equations described by Eq. (1.36) is accomplished either by

sparse direct solvers or by a linear preconditioned conjugate gradient (LPCG) solver. Two
types of direct solvers are available: (1) an older in-memory version of Choleski factoriza-

tion and back substitution based on profile storage of the upper-triangular portion of the
dynamic tangent stiffness matrix for the structure, (2) a family of platform specific, sparse

solvers based on multi-minimum degree re-ordering of the equilbrium equations. The

sparse solvers use much less memory and CPU time compared to profile Choleski solver for
larger models and approach the LPCG solver in efficiency on workstations which have slow-

er memory systems. Use of the direct solvers is recommended for 3-D models which are

essentially 2-D, e.g., a one or two-layer 3-D model to represent a plane-strain, plane-stress
or shell structure.

The LPCG solver forms the basis for efficient solution of very large 3-D models in

WARP3D. The solution using a LPCG algorithm involves the iterative improvement of an
approximate nodal displacement vector, u, through a sequence of matrix operations which

vectorize naturally and which are amenable to parallel processing. The computational pro-
cedure is implemented in an element-by-element architecture which eliminates the need

to assemble and store the dynamic tangent stiffness matrix for the structure. Consequent-

ly, the memory requirements for solution are dramatically reduced. Moreover, the CPU
time required for the LPCG iterative solution frequently is one-half or less of the CPU time

required for the direct solver. Both memory and CPU time reductions provided by the LPCG

solver are of paramount importance on supercomputers (sometimes making the difference

between practical and impractical storage/runtimesl. Use of the LPCG solver on Unix
workstations often enables the solution of relatively large problems in real memory with

CPU time -_ wallclock time. For such problems, the direct solver incurs a severe wallclock
time overhead for virtual memory paging to swap the assembled stiffness matrix (often >

200-400 MB) to/from disk storage. Models with 7,500 8-node elements run in-memory on

a 64 MB workstation using the LPCG solver with the diagonal preconditioner.

1.7.1 Linear Preconditioned Conjugate Gradient

As stated above, the linear preconditioned conjugate gradient algorithm can be used to

solve the linear system of equations in a nonlinear iteration of Newton's method. In the fol-

lowing development, the linear system of equations is denoted by Ax= b, where A is under-
stood to be the current estimate of the dynamic tangent stiffness and b the nonlinear resid-

ual. The matrix B represents the preconditioning matrix. The linear preconditioned conju-

gate gradient algorithm proceeds as follows:

1) Initialize:

x 0 = 0

for j = 1, Neq; ifj is a constrained dof,

rj=O
else

rj = bj
end if

k=l

note: non-zero displacement constraints are _ laced in the total increment of dis-

Chapter I 1.7-1 Introduction

LinearSolvers User'sGuide_ WARP3D

placement vector at the beginning of each step and corresponding residual entries
are set to zero.

2) Compute in order:

zk_l = B-lrk_l (1.47)

zT_ lrk - 1

flk -- zT_2rk_2 _1 = 0) (1.48)

Pk = zk- 1 + fl_Pk- 1 (P0 = 0) (1.49)

zT_ lrk - 1 (step length computation) (1.50)
a k - pTAp k

xk = xk-1 + akPk (1.51)

r k = rk_ 1 -- akAPk (1.52)

3) Check convergence:

if

else

IIrk 1I < tol IIro II then
LPCG solution converged

if k > iteration limit then

LPCG solution did not converge
else

end if

end if

k = k+l

return to (2)

The costly operations in the above algorithm are represented by the preconditioning step,

Eq. (1.47), and the matrix-vector product required by Eqs. (1.50) and (1.52). Performance

of the preconditioning step is discussed below. Because the matrixA is never formed on the
global level, the matrix-vector product is computed in blocks of similar, nonconflicting ele-
ments.

The key to the performance of the linear preconditioned conjugate algorithm is the

choice of a preconditioning matrix, represented by the matrix B in Eq. (1.47). Defining the
"A" norm as

IlxllA= xTA" (1.53)

the rate of convergence in this norm is given by

ILx-xklh = [Ix-xoHA (1.54)

where x is the condition number

_c = _max(B - 1A)/2min(B - 1-4) (1.55)

and ;tmax and 2rain are the maximum and minimum eigenvalues of B-1A (see Concus, et al.

[15], Golub [26], Hughes et al. [43]). The preconditioning matrix should resemble the in-

Introduction 1.7-2 Chapter I

User'sGuideu WARP3D Linear Solvers

verse ofA so that x approaches unity and convergence isenhanced, and itshould alsobe

a relativelytrivialmatter to invertthe preconditioningmatrix. Two preconditionersare
availablein WARP3D as outlined below.

Diagonal Preconditioner

The firstand simplest preconditioning matrix isthe diagonal preconditioner

B = diag(A) (1.56)

which represents diagonal scaling or an acceleration of the Jacobi iterative method. Instead

of using the current estimate of the dynamic tangent stiffnessA, it is also possible to employ

the diagonal elements of the current estimate of the tangent stiffness or the mass matrix

as the preconditioner, although no real advantage results since A must be available in some
form (in WARP3D, upper triangular storage by element) to calculate the step length and

the linear residual in Eqs. (1.50) and (1.52). The evaluation of Eq. (1.47) using the diagonal

preconditioner is accomplished on the global level, as i_ consists of a simple vector multiply.

Hughes-Winget Preconditioner

The second preconditioneravailableisthe Crout element-by--element preconditionerde-

scribedby Hughes, et.al.[42],[43].This preconditionerisan attractiveone because itcon-

forms tothe element storage ofdata inherent in the fiaiteelement method and itprovides

an easilyvectorizablealgorithm forblock and parallelprocessing.The preconditionercon-

sists of the product decomposition

N,z Nd 1

B=W1/2x y]L_x _D_x _ U_xW '/2

ell e= 1 efNet

where

(1.57)

W = diag(A) (1.58)

and L_, D_, _p are the lower triangular, diagonal, aad upper triangular matrices of the
Crout factorization of the corresponding Winget regularized element matrix defined by

= I + W -1/2(A e _ W e)W -1/2; we = diag(A e) (1.59)

The reverse element ordering in the upper triangular product of Eq. (1.57) insures that B

is symmetric, and the Winget regularization dictates that the regularized element matrix

be positive-definite. Since the regularized element matrix is also symmetric, L_ is the

transpose of _Fp and need not be computed or require additional storage. The upper triangu-
lar and diagonal matrix factors for a given element are computed by Eqs. (1.60)-(1.63), for
each matrix column k as k varies from one to the number of element degrees of freedom.

U_k = _; i = 1, k - 1 (1.60)

i-I

jffil

U_ - De.'
L_

i = 1, k - 1 (1.62)

k-1

D' k= - T. '""" ""jk"'jk '
j=l

i = 1, k - 1 (1.63)

1.7-3 IntroductionChapter 1
L--

Linear Solvers User's Guide _ WARP3D

The factorization is performed for all elements each time the matrixA is recomputed in the
course of the nonlinear iterative solution. In practice, all element matrices are stored and

manipulated in a compact upper triangular vector form. Performance of the element regu-
larizations and factorizations is accomplished in blocks of similar, nonconflicting elements

using the element computation algorithms.

The steps required to solve Eq. (1.47) given the preconditioning matrix of Eq. (1.57) are
listed as follows:

1) Global diagonal scaling:

* - 1/2rk - 1zo=W

2) Element forward reduction:

* (Lip)-1 * .Zi = Zi- 1 ,

3) Element diagonal scaling:

ZN,, "-" ^ (Dip) - I_ .0 = Zi= i-l'

4) Element back substitution:

(1.64)

i = 1, Nez (1.65)

i = 1, Nez (1.66)

ZNel+l = ZNel--_ Zi = (_)-lzi+I ; i = gel, 1 (1.67)

5) Global diagonal scaling:

Zk_ 1 = W-1/2_ 1 (1.68)

The element operations implied by Eqs. (1.65)-(1.67) are again executed in blocks of simi-
lar, nonconflicting elements. Element diagonal scaling is achieved at the global level

through the equation

Z Nel _r- 1 •^ ---- ZNe z (1.69)

where

(1.70)
^-1 N_

W = FID_ -1
e=1

is premultiplied during the regularization and factorization procedure.

1.7.2 Direct Solvers

The sparse direct solvers dynamically allocate sufficient real memory to store only the re-

quired terms of the dynamic tangent stiffness matrix for the structure. Virtual memory
(paging) facilities provided by the operating system permit solutions even when the

memory required for data storage exceeds the available physical memory. The "wallclock"
time increases dramatically for solutions that incur significant paging overhead.

The (old) profile-based direct solver uses a Choleski procedure to perform forward reduc-
tion of the load vector simultaneously with factorization of the dynamic tangent stiffness

(see Zienkiewicz and Taylor [90]). Inner loops of the factorization, forward pass and the

back pass steps are performed with calls to assembly language routines provided by the

computer manufacturer to obtain maximum performance on each platform.

Introduction 1.7-4 Chapter 1

User'sGuide_ WARP3D Linear Solvers _

The "generic" sparse direct solver in WARP3D derives from the VSS solver system de-
veloped by the Computational Structural Mechanics Branch of the NASA Langley Re-

search Center. The minimum degree re-ordering scheme dramatically reduces the real

memory and CPU time required for solution of the equations. The solution procedure has

several steps including: (1) assembly of only non-zero terms in the profile to exploit sparsity,
(2) minimum degree re-ordering of the equations, (3) symbolic factorization to determine

fill-in during decomposition, (4) numeric factorizatioa and loadpass. Typical 3-D solids

models analyzed with WARP3D often have only 2-5% n_n-zero terms in the profile with fill-

in after re-ordering of 10-20% of the profile. Memory requirements with the sparse solver
are thus often only one-fifth or less of those for the profile solver. Numeric factorization

times are reduced, with the reductions becoming more dramatic as the number of equations
increases. Further savings are realized in nonlinear solutions which maintain the same

matrix sparsity during Newton iterations; the solution processors bypass the re-ordering

and symbolic factorization steps.

Much research continues into improving the performance of sparse equation solvers.

Best performance is obtained only by matching features of the specific computer architec-
ture (memory hierarchy, cache size, vector lengths, etc.) to data structures and specific algo-

rithms in the solver code (especially the numeric factorization routine). Computer vendors

now supply optimized sparse solver libraries for their hardware. On the Cray C-90, T-90

computers, we use the Boeing Computer Services (BCSLIB) sparse solver. On SGI comput-
ers, we use the solver developed by Ed Rothberg's group at SGI which provides superb serial

and parallel performance. For serial execution, the SGI solver can run very efficiently in
out-of-core mode (helpful for executions on workstations). On HP workstations, the sparse

solver provided in their MLIB product can be invoked within WARP3D.

The user can specify which solver to use during inpt.t of initial model. The choice of solv-
er can be changed at any time during the solution. The (old) profile-based solver and the

"generic" sparse solver are available on all platforms.

When the direct solvers are entered for the first time during program execution, various

statistics about the solution are printed, including the actual number of equations to be

solved (constrained dofdo not appear in the assembled equations), the number of terms in

the profile, the number of non-zero terms in the profile, etc.

As for all "node" based direct solvers, the ordering _f structure nodes plays the critical

role in determining the computational effort required for solution. Traditional node re-

numbering procedures, e.g., reverse Cuthill-McGee and Gibbs-Poole-Stockmeyer should
be used to re-order the nodes before creating the WARP3D input file. Experience indicates

that such re-numberings also improve the performance of the sparse solver and are thus

highly recommended.

Pre-processing programs should be used to re-number model nodes to mini-

mize the profile before using the direct solvers.

1.7.3 Solver Summary

WARP3D offers two basic equation solving strategies: (1) linear, pre-conditioned conjugate
gradients, and (2) direct solution via factorization. The user makes an initial selection dur-

ing model definition but can change solvers at any time without incurring a memory penal-

ty.

For the LPCG solver, there are two preconditioners available: (1) diagonal and (2)

Hughes-Winget (HW). The diagonal preconditioner is very fast but generally requires more
iterations for convergence. The HW preconditioner mu,-t be used on models with poor condi-

tioning (e.g., shells modeled with solid elements).

Chapter I 1.7-5 Introduction

LinearSolvers User'sGuideD WAR P3D

The direct solvers may require much greater amounts of memory for solution of large

models. However, the sparse solver technologies have reduced numeric factorization times

and memory requirements tremendously from those of older"profiled _ solvers. The reduced

factorization times and large memories available today once again make direct solvers com-

petitive for large 3-D models. WARP3D offers an older style "profile _ solver and a "generic"

sparse solver on all platforms. On certain platforms (Cray, SGI, HP), highly optimized
sparse solvers are available for both serial and parallel execution. These solvers can attain
as much as a 5-8 x reduction in solution time compared to the generic sparse solver and

20-30 x reduction compared to the profile based solver.

Introduction 1.7-6 Chapter I

User'sGuide_ WARP3D Element Formulations

1.8 Element Formtdations

Development of the finite element formulation for three dimensional isoparametric ele-

ments begins with interpolation of the element displacements and coordinates. The de-
scription that follows refers to the kinematic nonlinear formulation; simplifications to ob-

tain the conventional linear kinematic formulation are straightforward.

All quantities are described relative to a fixed set of Cartesian axes,,_, defined at t = 0.

LetXdenote the Cartesian position vectors for material points at t = 0 (see Fig. 1.2). Posi-

tion vectors for material points at time t are denoted x. The displacements of material

points are thus given by u -- x - X and the material point velocities by u (later we also

use v to denote material point velocities). Components of X, x, u and u are all defined using
the basis vectors for axesX. In static analyses we associate the time-like parameter t with

a specified level of loading imposed on the model. Stress and deformation rates are thus

defined with respect to the applied loading rather than with time.

1.8.1 Interpolating Functions

The velocity of a material point at t is interpolated from the nodal velocities using a conven-

tional element interpolating ("shape") function matrix in the form

['].Z
W 3xl (Ue)nxl 3nxl

(1.71)

where n here denotes the number of element nodes. Note the non-conventional ordering

of nodal displacements in ue which facilitates vectorization of numerical computations. The

coordinates of a material point in the configuration at time t are interpolated from the nodal
coordinates at t using the same shape functions, resulting in the similar equation

x = y = N| (CYe)nxl = e (1.72)

z 3×1 [(c)n×l 3n×1

where Ce = ce, t =0 + Ue. The element shape functions,)ne for each element node, are func-
tions of the parametric variables _, r], and _. For convemence, they are grouped in the row
vector

N = (N 1N 2 ... N, >lXn (1.73)

The shape function derivatives with respect to the ps rametric variables are represented

by the row vectors

N,_ = <NI,$N2z ...Nn_ >lXn (1.74)

N,, 7 = (NI_N2, _ ... Nn,_ >Ixn (1.75)

N,¢ = (N1, _ N2, _ ... Nn, _)lxn (1.76)

The element shape functions are collected in the element shape function matrix defined by

[oo]/V = 0 N (1.77)

0 0 Y 3x3n

1.8-1 IntroductionChapter I

ElementFormulations User'sGuidem WARP3D

1.8.2 Cartesian Derivatives

The Jacobian matrix relating differentials in parametric and Cartesian (x) coordinates is

given by

"ax ay Oz"

a_ a_ a_

ax Oy Oz (1.78)
J= arl arl arl

Ox Oy az

a_ a_ a_
x3

with the inverse of the Jacobim_ matrix denoted by

/, = j-1 (1.79)

The gradients of velocity with respect to the x configuration are contained in the vector de-

fined by

q,
--- ey

_gz

8= d,y

d,z

U_x

V_x

W _x

U_y

= V,y

W,y

, U,z

i V,z
L W_z • 9xl

(1.80)

The velocity gradients in parametric space constitute the vector

d,$

d,,1

d,_

U,$

V,$

W,$
U,r l

= V,r]

W _rl

U,¢

.9xl

The two velocity gradient vectors are related by the equation

(1.81)

O = f_b (1.82)

where

r#_ r#3 r#_]
/_ = F2113 :r22/3 F23/3 (1.83)

F3113 F32/3 F33/3-9x9

where/3 denotes a 3 × 3 identity matrix. The velocity gradients in parametric space are

expressed in terms of the nodal velocities by

@ = Gfte (1.84)

Introduction 1.8-2 Chapter 1

User'sGuide_ WAR P3D Element Formulations

where

G

N,_
^

N,_

N,_

d,°o°o o N,_

= N'_ N0,_ 00 N,_

0
0 0 N,_

9x3n

(1.85)

1.8.3 B Matrix

At time t, we impose a compatible virtual displacement field on the the current (deformed)

configuration. The corresponding virtual deformation is defined using the 6 x 1 vector form
of the symmetric deformation tensor

{_EX "

6ey
6ez

6e = 6?_y =

6yyz
67=

(_U_ x

&V,y
C_W_z

6U,y + 6V,x

(_V,z + (_W,y

_W,x + _U,z
6xl

(1.86)

where it is understood that, for example, that 5u,x = O(6u)/Ox. In terms of the virtual nodal
displacements, we write in conventional form

(1.87)_15(6x 1) = B(6x3n)(_Ue(3nx 1)

where the strain--displacement B matrix is constructed as follows. Define the Boolean ma-
trix B by

100000000]

000010000

8 8ooooo 100000

_80001010
1000100 6x9

(1.88)

which permits expression of the strain-displacement matrix B by

(1.89)
. ^

B(6 x 3n) = B(6 x 9)F(9 x 9)G(9 x 3n)

The vectors and matrices presented in this section form the building blocks of the key ele-
ment quantities determined below.

1.8.4 Internal Force Vector

The element internal force vector is derived from the ir ternal virtual work term in Eq. (1.4)
given by

(_'TodVe + E 6dTpddVe - _ 5dTpi = 0 (1.90)
j=l j=l i=1

V_ V_

Using the virtual deformation expressed in terms of the element B matrix, we have (for a
single element)

Chapter I 1.8-3 Introduction

ElementFormulations User'sGuidew WARP3D

f 6_TodV_ = 3Ue T I BTadVe (1.91)

v, v,

where again Ve denotes the element configuration at t, a denotes the symmetric Cauchy
stresses expressed in 6 x I vector format at t, and the B matrix is evaluated using coordi-

nates of element nodes at t, ee = ee, t =0 + Ue. Using Eq. (1.6) we see that the element inter-
nal force vector is given by

1 1 1

(1.92)

Ve -1 -1 -1

The global internal force vector is obtained through global assembly of the element internal
force vectors.

1.8.5 Strain Increment for Stress Updating

Newton's method advances the globalsolutionfrom time step n ton+l through a seriesof

iterativeimprovements to the solutionat n+l. Let idenote the current Newton iteration

for the solutionat n+l, u_)+Ithe ithestimate forthe element nodal displacements at n+l
and Un the converged solutionforelement nodal displacements atn. Using the mid-incre-

ment configuration,the ithestimate forthe (mechanical) strainincrement over the stepis

given by

l (i)
A_(i)= Bn+ } (Un+ I - Un) - A, th (1.93)

where the B matrix is evaluated using nodal coordinates Ce = X n + 1/2" The specified ther-
- (i) isreal strain increments over n---,n + 1 are indicated by Aeth. The strain increment ae

passed to the stress updating (constitutive) models, after rotation effects are neutralized
as described in Section 1.9.4, to obtain the new estimate for the Cauchy stresses at n+l,
a(i)

n+l"

Key and Krieg [49] and Nagtegaal and Veldpaus [66] have demonstrated that Eq. (1.93)
defines a constant rate of logarithxaic strain over the step. In a one-dimensional setting,

integration of the strain rate to define a total strain measure using the mid-point rule

above remains surprisingly accurate for very large increments. In multi-dimensional prob-
lems, the interpretation of logarithmic strain holds if the principal directions of strain ro-

tate to match the rigid body motion. This rarely happens and thus accumulated increments

of converged A_ values do not represent a valid total strain measure.

1.8.6 Tangent Stiffness Matrix

The element tangent stiffness matrix is defined in terms of the rate of the element internal

force vector by

Ie = [KT]eUe (1.94)

From Eq. (1.92) the rate of the element internal force vector is

Ie= IBTadVe+ IBTbdVe
(1.95)

Introduction 1.8-4 Chapter 1

User'sGuideB WARP3D Element Formulations

The first term in Eq. (1.95) can be manipulated into the form (see Zienkiewicz and Taylor
[91])

where

y_

(1.96)

r olz3oj. oJa]
/ °J3 °2/3 05/3 | (1.97)

Mo: L°a. oa.oa=J0x0
Eq. (1.96) defines the so-called "imtial-stress" or geometAc stiffness matrix

[Kgrle = I GTFTMaFGdVe (1.98)

v,

The second term in Eq. (1.95) resolves to

v, Lv,

where E (6 x 6) denotes the constitutive matrix relating the (spatial) rate of the deforma-

tion to the spatial rate of Cauchy stress, as in

= E_ = EBue (1.100)

Since a does not vanish under motion corresponding to a rigid rotation (see Johnson and
Bammann [47], Rubinstein and Atluri [78]), a rotation neutralized stress rate must be

employed in development of the constitutive matrix, E. In WARP3D, the Green-Naghdi

[28] stress rate is used to formulate E (see Section 1.9.4 for the stress updating strategy).

Upon combining Eqs. (1.98) and (1.99), the elemeat tangent stiffness matrix may be
written as

(1.101)

y_

1 1 1

-1 -1 -1

When required for the direct solver, the tangent stiffne _s matrix for the structure (in global

coordinates) is obtained through the usual assembly of element matrices.

All deformation dependent quantities appearing in Eq. (1.102) refer to values for the
th (D

i iteration of step n+l, i.e, B is evaluated using the nodal coordinates x +., the Cauchy
• • • . . _ 1

stresses appearing in Ma are a_)+, and E is the tangent modulus which advances the spatial
.... thrate of Cauchy stress from n to n+l (_ iteration) consistent with the stress updating proce-

dure for the strain increment AE(i).

Chapter 1 1.8-5 Introduction

_ Element Formulations User's Guide w WARP3D

The stiffness formulations employed in WARP3D do not correspond to either of the

traditional procedures, Total Lagrangian (T.L.) or Updated Lagrangian (U.L.), (see Bathe

[6], Zienkiewicz and Taylor [91]). In T.L., the tangent stiffness is expressed using all de-

formation quantities relative to the configuration at t = 0. In U.L., the converged solution

at n provides the reference configuration for all quantities needed in [KT]. Both of these ap-
proaches require the inclusion of additional (nonlinear) terms inB and the use of2nd Piola-

Kirchoff stresses rather than the Cauchy stress.

The present formulation, with minor differences, follows closely that used in the NIKE

codes (Hallquist [30], [31]).

1.8.7 Mass Matrix

The element consistent mass matrix is derived from the inertial virtual work term in Eq.

(1.4) given by

I ddTp_IdVe (1.103)

v,

where integration is over the (current) deformed volume and p denotes the mass density

per unit of deformed volume. Upon substitution of Eq. (1.71) and its second time derivative,

noting that the shape functions are independent of time, Eq. (1.103) becomes

ve v, j

A comparison with Eq. (1.6) reveals that the element consistent mass matrix has the form

1 1 1

Me pNTNdV, = pN N IJI d_drld_ (1.105)

v, -1 -1 -1

where IJ I is evaluated using nodal coordinates at t. Considering the block diagonal struc-
ture of Eq. (1.77), the element consistent mass matrix is also block diagonal, and it is only

necessary to compute the block diagonal mass matrix corresponding to one of the three con-

tinuum degrees of freedom and to assign this matrix to the other two nodal freedoms.

The mass density Q appearing in Eq. (1.105) corresponds to the current configuration,

as the inertial body force acts there. It may be expressed in terms of the mass density in

the undeformed (t = 0) configuration by

P0 = P IF[(1.106)

where IF[denotes the determinant of the deformation gradient, F = Ox/OX. Using the

relation dVe= [F[dV o, and Eq. (1.106), the element consistent mass matrix may be ex-

pressed using quantities referenced to the t = 0 configuration

1 1 1

I(IMe = po N N[Jo l d_d_ld_ (1.107)

-1 -1 -1

where [J0 [is the determinant of the coordinate Jacobian at t = 0. The element consistent
mass matrix defined by Eq. (1.107) is independent of time; consequently, the element tan-

gent and secant consistent mass matrices are equal.

Introduction 1.8-6 Chapter 1

User'sGuiden WARP3D Element Formulations __

It is also possible to define a diagonal element hanped mass matrix. This is accom-

plished in the following manner (Hinton, et al. [37]):

1) Compute the diagonal terms of the block diagonal consistent mass matrix corresponding
to one of the continuum degrees of freedom.

2) Accumulate the mass of these diagonal terms. Scale the diagonal terms by the ratio of the
total element mass related to the continuum degree of freedom to the accumulated mass
so that the total mass of the diagonal terms is correct. Assign the diagonal terms to the oth-
er two continuum degrees of freedom. This is the element lumped mass matrix.

Once again, either the global consistent or lumped mass matrix is found through assembly
of the element matrices.

w

Chapter I 1.8-7 Introduction

User'sGuideD WARP3D Finite Strain Formulations

1.9 Finite Strain Plasticity

The theoretical basis and numerical implementation of a constitutive architecture suitable
for finite strains and rotations are described in this section. The constitutive equations gov-

erning finite deformation are formulated using strains-stresses and their rates defined on
an unrotated frame of reference. Unlike models based on the classical Jaumann [46] (or co-

rotational) stress rate, the present model predicts physically acceptable responses for ho-

mogeneous deformations of exceedingly large magnitude. The associated numerical algo-

rithms accommodate the large strain increments which may arise routinely in the implicit

solution of the global equilibrium equations employed in WARP3D. The resulting computa-
tional framework divorces the finite rotation effects on strain-stress rates from integration

of the rates to update the material response over a load (time) step. Consequently, all of the

numerical refinements developed previously for small-strain plasticity (radial return, kine-

matic hardening, consistent tangent operators, dilatant plasticity models for continuum

descriptions of void growth) are utilized without modification.

Two fundamental assumptions (and points of criticism, see Simo and Hughes [84]) un-

derlie the present implementation of this framework in WARP3D: (1) additive decomposi-

tion of elastic and plastic strain rates expressed on the current configuration remains a val-

id description of the deformation, and (2) material elasticity maybe adequately represented

by an isotropic, hypoelastic model. These assumptions require that plastic strains (and
rates) greatly exceed elastic strains (and rates). Such conditions are easily realized in the

study of ductile fracture in metals which possess large E/a o ratios. For other materials,

such as polymers, the ad hoc treatment of elasticity adopted here becomes unsuitable-- at
best. A multiplicative decomposition of the deformation gradient into elastic and plastic

components, when coupled with a proper hyperelastic treatment of material elasticity, is

clearly more appropriate (Moran, Ortiz and Shih [62], Simo and Ortiz [83]). Nevertheless,
the essential features of the present finite-strain plasticity formulation provide the core

technology adopted in large-scale finite element codes, including NIKE ([30] [31]), DYNA
([27]), PRONTO ([85] [86]), ABAQUS-Standard [35] and ABAQUS-Explicit ([36]).

The following sections describe the basis for the constitutive framework and the de-

tailed, step-by-step implementation in WARP3D. Once the kinematic transformations
have eliminated rotation effects on rates oftensorial quantities, the stress updating proce-
dures for each constitutive model are those for the conventional small-strain formulation.

Details of the usual small-strain computations are described in Chapter 5 for each of the

material models currently available.

The reader interested in an extensive description, the numerical implementation de-

tails and the criticism of this finite-strain plasticity framework is referred to the monograph

of Simo and Hughes [84], specifically Chapters 6 and 7.

1.9.1 Kinematics, Strain-Stress Measures

Development of the finite strain plasticity model begins with consideration of the deforma-

tion gradient

F = Ox/OX, det(F) = J > 0 (1.108)

where X denotes the Cartesian position vectors for material points defined on the configu-
ration at t=O. Position vectors for material points at time t are denoted x (configuration B

in Fig. 1.4, after Flanagan and Taylor [24]). The displacements of material points are thus

given by u = x - X. The polar decomposition ofF yields

F = VR = RU (1.109)

Chapter 1 1.9-1 Introduction

FiniteStrainFormulations User'sGuide-- WARP3D _

where V and U are the left- and right-symmetric, positive definite stretch tensors, respec-
tively; R is a orthogonal rotation tensor. The principal values of V and U are the stretch

ratios, hi, of the deformation. These two methods for decomposing the motion of a material

point are illustrated in Fig. 1.4. In the initial configuration, Bo, we define an orthogonal

reference frame at each material point such that the motion relative to these axes is only
deformation throughout the loading history. With the RU decomposition, for example,

these axes are "spatial" during the motion from B o to Bu; they are not altered by deforma-
tion of the material. However, during the motion from Bu to B these axes are "material";

they rotate with the body in a local average sense at each naaterial point. Strain-stress ten-
sors and their rates referred to these axes are said to be defined in the unrotated configura-
tion (Johnson and Bammann [47] and Atluri [4]).

w

Rigid Axes Attached To A
_ Material Point

(/'"/-__ _ Axes Are Spatial: Do Not

Axes Are Material: Follow \ Bo _ Follow Deformation

the Rotation R _ - /_

Axes Are Spatial: Do Not
Follow Deformation Axes Are Material: Follow

the Rotation

FIG. 1.4--Motion of Model Using Polar Decomposition ([24])

The material derivative of displacement with respect :o an applied loading parameter

is written as v = x (i.e., the material point velocity in dynamic analyses). The spatial gradi-
ent of this material derivative with respect to the currenl configuration is given by

L - av _ Ov OX _ FF-1 (1.110)
Ox OX Ox

Introduction 1.9-2 Chapter I

User'sGuidem WARP3D Finite Strain Formulations

The symmetric part of L is the spatial rate of the deformation tensor, denoted D; the

skewsy-mmetric part, denoted W, is the spin rate or the vorticity tensor. Thus,

L = D + W (1.111)

where

D =½(L+LT); W=½(L-LT). (1.112)

W represents the rate of rotation of the principal axes of the spatial rate of deformation

D. When integrated over the loading history, the principal values of D are recognized as the

logarithmic (true) strains of infinitesimal fibers oriented in the principal directions if the princi-

pal directions do not rotate. It is important to note thatD and Whave no sense of the deforma-

tion history; they are instantaneous rates.

Using the RU decomposition ofF, the spatial gradient L may be also written in the form

L = RR r + R_'U-1R T (1.113)

in which the following relations are used

F = RU + RU (1.114)

and

F-1 _- (RU)-I = U-1R -1 = U-1R T . (1.115)

The first term in Eq. (1.113) is the rate of rigid-body rotation at a material point and
is denoted $} (see Dienes [20]). The spin rate W and _ are identical when the principal axes

of D coincide with the principal axes of the current stretch V (this observation plays an es-
sential role later in development of a linearized tangent operator). Simple extension and

pure rotation satisfy this condition. The symmetric part of the second term in Eq. (1.113)
is called the unrotated deformation rate tensor (sometimes the rotation neutralized de-

formation rate) and is denoted d

d= 1 " -1 1_]) ._(UU + U- (1.116)

The unrotated rate of deformation defines a material strain rate relative to the orthogo-

nal reference frame indicated on configuration B in Fig. 1.4.

Using the orthogonality property of R that d(RTR)/dt=O

RTR + RTR = 0 (1.117)

the unrotated deformation rate may be expressed in the simpler form as

d = RTDR . (1.118)

The principle of virtual displacements (Section 1.4) demonstrates that the spatial rate
of deformation, D, and the symmetric Cauchy (true) stress, a, are work conjugate in the

sense that work per unit volume in the current configuration is given by a0.Dij. Since compo-
nents of both D and a are defined relative to the fixed, global axes, the work conjugate stress

measure for d on the unrotated configuration is given simply by

t = RToR (1.119)

where t is termed the unrotated Cauchy stress, i.e., a is the tensor t expressed on the fLxed

global axes.

Chapter 1 1.9-3 Introduction

FiniteStrainFormulations User'sGuidem WARP3D

1.9.2 Selection of Strain and Stress Rates

The simplest form of a hypo-elastic constitutive relation is adopted to couple a materially
objective stress rate with a work conjugate deformation rate. The Jaumann and Green-

Naghdi objective rates of Cauchy stress are

= 0 - Wa + aW = E:D (Jaumann) (1.120)

= 0 - me + am = E" D (Green-Naghdi) (1.121)

where the modulus tensor E may depend linearly on the current stress tensor and on histo-

ry dependent state variables (E" D denotesE i _klDk,). Once the objective stress rate is eva-
luated using E" D, the spatial rate of Cauchy_stress, o, is found by computing W or _ and

transposing the above equations. In a finite-element setting, these rate expressions are nu-

merically integrated to provide incremental values of the Cauchy stress corresponding to
load (time) steps.

When D vanishes both the Jaumann and Green-Naghdi rates predicted by the constitu-

tive models also vanish; however, the two stress rates lead to different spatial rates of

Cauchy stress since W and Q are generally not identical. Use of the spin tensor W in Eq.

(1.120) causes the physically unreasonable (oscillatory) response predicted for the finite
shear problem; the Green-Naghdi rate leads to a realistic response. However, the debate
ofver physically meaningful stress rates continues.

The Jaumann rate is adopted extensively in finite element codes--the quantity W is

readily available as a by-product of computing D whereas computation of Q requires polar

decompositions ofF. Hughes and Winget [41] recognized t:aat a constant spin rate W (and
rotation rate _) limits the acceptable step sizes for implicit codes. They developed a numeri-

cal integration scheme for Eq. (1.120) that retains objecti_dty for rotation increments ex-
ceeding 30 °. Such refinements, however, do not remove the fundamental cause (W) of the

oscillatory response in simple shear. Roy, Fossum and Dexter [77] recently implemented

a 2-D, implicit finite-element code based on the Green-Naghdi rate as expressed in Eq.

(1.121). They employed the Hughes-Winget procedure to integrate J using _ computed
from polar decompositions off at the start and end of each load increment.

The Green-Naghdi rate may be written alternatively _.s the rate of unrotated Cauchy
stress, t, expressed on the fLxed, Cartesian axes

-- RtR T = E : D . (1.122)

Transformation of the spatial deformation rate D in t_s expression to the unrotated

deformation rate d yields

i = E" (RTDR) = E" d . (1.123)

Constitutive computations, equivalent to the Green-Naghdi rate in Eq. (1.121), there-

fore can be performed using stress-strain rates defined on tSae unrotated configuration. Up-
dated values of t are rotated via R to obtain the updated Cauchy stress at the end of a load

increment. The numerical problems of integrating the rotation rates in Eqs. (1.120) and

(1.121) are thus avoided. Moreover, tensorial state variables of the plasticity model, e.g.,
the back-stress for kinematic hardening, are also defined a-ld maintained on the unrotated

configuration and thus never require correction for finite rotation effects. Hallquist [30],

[31] was apparently the first to recognize the simplicity derived from this constitutive
framework and used it in the NIKE and DYNA codes. Later, this framework was adopted

by Flanagan and Taylor for the PRONTO-2D [85] and PEONTO-3D [86] codes, by Biffie

1row

Introduction 1.9-4 Chapter I

User'sGuide_ WARP3D Finite Strain Formulations

and Blandford for the JAC-2D [7] and JAC-3D [8] codes, and most recently in the commeri-

cal ABAQUS-EXPLICIT [36] code. The potential disadvantage of this constitutive frame-
work is the numerical effort to compute R from the polar decomposition F=R U at thousands

of material points for each of many load steps. For explicit codes in which time steps are

necessarily very small to maintain stability, an efficient (forward) integration scheme de-

veloped by Flanagan and Taylor [24] may be used to update R without the polar decomposi-
tion. The polar decomposition issue is discussed in the section on numerical procedures.

1.9.3 Elastic-Plastic Decomposition

Further developments require kinematic decomposition of the total strain rate d into elas-

tic and plastic components. The multiplicative decomposition of the deformation gradient

F = FeF p (1.124)

appears most compatible with the physical basis of elastic-plastic deformation in crystal-
line metals (see, for example, Lee [52] and Asaro [3]). F p represents plastic flow (disloca-

tions) while F e represents lattice distortion; rigid rotation of the material structure may be
considered in either term. Substitution of this decomposition into the spatial rate of the dis-

placement gradient Eq. (1.110) yields

L = FeF-e + FeI_'PF-PF -e = L e + FeLPF -e (1.125)

We now impose the restriction that elastic strains remain vanishingly small compared
to the unrecoverable plastic strains; a behavior closely followed by ductile metals having

an elastic modulus orders of magnitude greater than the flow stress. Consequently, F p and

F e are uniquely determined by unloading from a plastic state. This considerably simplifies
the above expression and permits separate treatment of material elasticity and plasticity.

Using the left polar decomposition and writing the stretch as the product of elastic and plas-

tic parts yields

F = FeF p = veVPR (1.126)

Identifying the elastic deformation as

F_ = ve (1.127)

and using the small elastic strain assumption, we have

Fe=l+ee=I. (1.128)

Consequently, the expression for L is approximated by

L _ L e + L p . (1.129)

As in Eq. (1.112), the symmetric part of this approximation for L is taken as D with the
result that

D = D e + D p . (1.130)

Given the restriction of vanishingly small elastic strains, the multiplicative decomposi-
tion of the deformation gradient in Eq. (1.124) leads to the familiar additive decomposition

of the spatial deformation rate D into elastic and plastic components. The transformation
of D to the unrotated configuration using Eq. (1.118) provides the decomposition scheme
needed for d as

d =RT(D e+Dp)R = d e +dp . (1.131)

Chapter I 1.9-5 Introduction

FiniteStrainFo'rmulations User'sGuide-- WARP3D

Once the above transformation of elasticand plasticstrainrates onto the unrotated

configurationisaccomplished, the remaining stepsindevelopment ofthe finite-strainplas-

ticitytheory are identicaltothose forclassicalsmall-straintheory.

Ifthe elasticstrainsare not vanishingly small,the incrementally linearform ofthis

hypo-elasticmaterial model predictshystereticdissipationand residual stressesforsome

closedloading paths,forexample, the path definedby finiteextension--*finiteshear--*ten-

sionunloading--*shearunloading (Kojicand Bathe [51]).Uncoupled loading-unloading for

extension and shear produces no residual stresses.For finite-strainplasticityofductile

metals having large modulus-to-yield stressratiosthissituationisnot a serious concern

sinceplasticstrainsare commonly 50-100 times greaterthan the elasticstrains.

1.9.4 Numerical Procedures

The global solution is advanced from time (load) tn to t n + 1using anincremental-iterative New-

ton method. Iterations at t n + 1 to remove unbalanced nodal forces are conducted under fixed
external loading and no change in the prescribed displacements for displacement controlled

loading. Each such iteration, denoted i, provides a revised estimate for the total displacements

at t n + 1, denoted (i)u, 1"Fully converged displacements at tn are denoted Un. Following Pinsky,
Ortiz and Pister [73] a mid-increment scheme is adopted in which deformation rates are eva-

luated on the intermediate configuration at (1 - 7)Un + 7u_)+ r The choice of 7 = 1/2 repre-
sents a specific form of the generalized trapezoidal rule that is unconditionally stable and se-
cond-order accurate. Key and Krieg [49] have demonstrated the optimality of the mid-point

configuration for integrating the rate of deformation and the resulting correspondence with
logarithnnic strain (for uniaxial conditions).

The following sections describe the computational processes performed at each materi-

al (Gauss) point to: 1) update stresses and to 2) provide a consistent tangent matrix for updat-

ing the global stiffness matrix. A brief discussion of the procedure to compute the polar decom-

position of the deformation gradient is also provided.

Stress Updating Procedure

The computational steps are:

Step 1. Compute the deformation gradients at n + 1/2 and n + 1

n+l 0X '

Step 2.

O(X + u (i) -In + 1/2]
F (i) = (1.133)

n + 1/2 OX

Compute polar decompositions at n + 1/2 and n + 1

F(i) (i) . U(i)
n+l = Rn+l n+l

(1.134)

F (i) = R (i) • U (i) (1.135)
n+1/2 n+1/2 n+1/2

Step 3. Compute the ith estimate forthe spatialdefo_-_nationincrement over the step

from the B matrix forthe element, see Eq. (1.93)and Se(tion 1.8.5.

a (i)= B(ni +1/5 ") -[Un+ 1 Un) (1.136)

Introduction 1.9--6 Chapter 1

User'sGuidem WARP3D Finite Strain Formulations

AD (i) *- Ae (i) (convert 6 x I vector to symmetric tensor) (1.137)

This procedure, as compared to the more conventional scheme using Eqs. (1.110) and

(1.112), provides a straightforward method to utilize the B formulation (to replace B) for

finite strains thereby reducing volumetric locking in the element.

Step 4. Rotate the increment of spatial deformation to the unrotated configuration

Ad(i) = R(i)T . AD(i). v(i) _ (1.138)
n+ 1/2 ZLn+ 1/2

Step 5. The terms of the symmetric tensor Ad (i) define the strain increments for use in a
conventional small-strain model. Invoke the small-strain model to provide the i th estimate

for the unrotated Cauchy stress at n + 1

t(i) ,_ e(tn,HJ, qn, Ad(i)) (1.139)n+l

where C denotes the small-strain integration process (typically, an elastic-predictor, return

mapping algorithm). The integration process requires the material state at n: the unro-
tated Cauchy stress (tn), a set of scalar state variables denoted by H j, and a set of tensorial

state variables denoted by qn which are maintained on the unrotated configuration in the

model history data.

Step 6. The unrotated Cauchy stress at n + 1 is transformed to the Cauchy stress at
n + 1 required for subsequent computation of element internal forces

an+l = Rn+ltn+lRT+l (1.140)

Key advantages of the above steps are the absence of half-angle rotations applied to stresses
(and tensorial state variables) found in co-rotational rate formulations, Eqs. (1.120) and

(1.121), and most importantly, the ability to use an existing small-strain constitutive model

for Step 5 without modification since all quantities are referred to the unrotated configuration.
The disadvantage is the need to perform two polar decompositions for the stress update at each

material (Gauss) point.

Consistent Tangent Operators

Tangent operators, denoted here by E, are needed to form new element stiffness matrices
for the i th Newton iteration during solution for step n+l as expressed in Eqs. (1.99) and

(1.102). The operators couple increments of the spatial deformation tensor expressed on the
current configuration with increments of the spatial Cauchy stress required by the fully

updated formulation adopted in WARP3D. Because the incremental-iterative Newton solu-

tion at the global level uses finite increments of quantities to advance the solution from n
to n+l, rather than simple rates x dt, the tangent operators should provide incremental,

secant relationships.

For plasticity models implemented in a small-strain setting, Simo and Taylor [82] pres-
ented the first formalized procedures to develop the (secant) relationships and coined the

phrase consistent tangent operator. For small-strains, consistency implies that the finite
stress increment predicted by the tangent operator, E c, acting on a finite strain increment
matches (to first order), the stress increment determined by the procedures used to inte-

grate the plasticity rate equations over the step, i.e.,

tn+l

= + EC:(,I,)) IT(i)
n+ 1 \ n+ 1 -- _n _- rn + _dt

tn

(1.141)

Chapter 1 1.9-7 Introduction

FiniteStrainFormulations User'sGuide-- WAR P3D _

where v denotes the stress measure in the small-strain setting.

In the finite-strain framework adopted for WARP3D, the notion of a consistent tangent

operator for the stress-update procedure on the unrotated configuration follows directly as (in
matrix-vector form)

{t I(i) _--'n+l {t}n -F {At} (/)= {t}n + [E*](in)+l{Ad (i)} (1.142)

where the * denotes the 6 x 6 consistent tangent operator defined on the uurotated configura-
tion and the vector form of the symmetric, unrotated deformation tensor, Ad (i), is used.

The needed form of the above relation for the fully updated solution strategy, expressed

by Eq. (1.99), is

tn+l

/ (i) -- _n I = a n + I odt (1.143)a (i) = an + E c : [en + 1
n+l] J

tn

where the spatial rate of Cauchy stress is integrated over n-*n+l. Using the Green-Naghdi
rate of Cauchy stress from Eq. (1.121), the above expression becomes

tn+l

o(i)n+l -_°n'_'EC:[fn+l-fn =On'{" (&+_a-oD)dt . (1.144)

tn

Simo and Hughes [84] and Cuitino and Ortiz [18] discuss the difficulty of constructing the

consistent tangent operator implied above by E c which includes potentially large-rotation

effects over the step coupled with material stress increments caused by the deformation
increment.

In the following we use a variation of the approximate linearization to define the trans-

formation [E *] --* [El employed in the NIKE codes and in ABAQUS. Computational experi-
ence indicates the procedure is quite robust and maintains good rates of convergence in the

Newton iterations. We drop the iteration indicator (i) for simplicity and we use the vector
form, Ae, of the symmetric, spatial deformation tensor, AD. A mix of tensor and matrix-vec-

tor operations provides the most straightforward presentation.

The relationship between the tensor forms of the spati_d deformation rate and the unro-
tated deformation rate, Eq. (1.118), is re-written in matrix-vector form as (using standard

conversion of the rotation operation from tensor to matrix format)

{_} = [r]{d} (1.145)

where the 6 x 6 matrix [T] is defined using Rn+ r The terms of [T] are given by

[T] =

R_, R_2 R_3

R_, R_2 R_3

R_I R_2 R_3

RllR21 Rl_22 R13R=s

R21R31 R3_R_ R2_R33

iR11R31 R,2R32 Rl_R33

_11_12 _13_12 _11_13

_21_22 _23_22 _-_21_ 23

_3_R32 2R3_S2 _S_R3Z

(RIIR22 + _[_21R12)(_[_12_23-4-R1_22) (Rl1_23 + R13_211

(RzlR.q2 + R2_31) (R22R33 + R3,.R23) (R21R33 + R23R31)

(RI_Rs= + R1]t31) (R_Jt= + R_32) (RI_R_3 + R3_R_3) i

(1.146)

The rate of unrotated Cauchy stress, Eq. (1.123), may then be written in matrix form as

Introduction 1.9--8 Chapter I

User'sGuideB WARP3D Finite Strain Formulations

{t} = [E*]{d} = [E*][T]T{_}. (1.147)

where orthogonality of the rotation matrix [T] is used. Note that [E *] actually used in com-

putations is the consistent tangent operator defined by Eq. (1.142). Now the Green-Naghdi

stress rate in Eq. (1.122) becomes

{_} = [T]{t} = [T][E*][T]T{_} (1.148)

and existing symmetries of [E *]are preserved through the IT] transformation.

We invoke the relationship between the Green-Naghdi stress rate and the spatial rate

of Cauchy stress rate given by Eq. (1.121). The left side of Eq. (1.121) is simply the symmet-
ric tensor form of {el given above. To arrive at a tractable form for the - _9a + a_ terms,
the approximation W - _ = RR T is adopted. Nagtegaal and Veldpaus [66] demonstrated

the validity of this approximation when the rate of logarithmic strain remains constant

over the step, which is consistent with the present stress updating procedure. Moreover,

they showed that the - We + aW terms could be re-cast in matrix form (using the
W = L - D decomposition with L given by Ov/Ox in Eq. (1.110)) as

- Wa + aW--, [Q]{_} (1.149)

where the assumption of incompressibility becomes necessary to arrive at a symmetric

form of [Q]. The terms of [Q] are

"2o11

0

0

[Q]= o12

0

O13

0 0 O12 0 O13

2022 0 O12 023 0

0 2033 0 023 O13

o ,,, 1o= , }(o,,+7012 033

(1.150)

By expressing each term of Eq. (1.121) in matrix-vector form, the spatial rate of Cauchy

stress is given by

{a} = [[T][E*][T] T- [Q]]{_} = [E]{_} . (1.151)

This expression defines the finite strain-rotation form of the tangent operator for use in
construction in the element tangent stiffness in Eq. (1.102). This form is not a true consis-

tent operator as the kinematic transformation uses the rate expressions at n+l rather than
the secant relationship from n to n+l. Use of the constitutive consistent [E *] seems to be

far more important for convergence.

The tangent operator defined in Eq. (1.151) appears in the NIKE-2D and NIKE-3D (im-

plicit) codes which also adopt a Green-Naghdi stress rate and stress updating procedure

followed here. However, the [Q] term is omitted in forming the element tangent stiffness

such that [E] - [E *]. Our numerical experiments indicate that inclusion of[Q]is essential
to maintain quadratic rates of convergence in the global Newton iterations when large por-
tions of the model undergo nearly homogeneous deformation. In other instances, [Q] may
be omitted as in the NIKE codes without a detrimental effect on convergence rates. The

nonlinear solution parameters defineable in WARP3D enable the user to include-exclude

the [Q] matrix.

Chapter 1 1.9-9 Introduction

FiniteStrainFormulations User'sGuide-- WARP3D

Polar Decomposition

The polar decomposition F=RUis a key step in the stress-updating algorithm and must be

performed twice for each Gauss point for each stress update, i.e., at n + 1/2 and n + 1. The
computational effort required for the polar decomposition should be insignificant relative

to the element stiffness computation and the equation solving effort. For their explicit code,

Flanagan and Taylor [24] developed an algorithm for the integration ofR = _2R that main-
tains orthogonality of R for the very small displacement increments characteristic of explic-

it solutions. Numerical tests readily show their procedure fails for large displacement incre-

ments experienced with implicit global solutions. The following algorithm removes such ap-

proximations by providing an exact construction of R and U for arbitrary size load steps
and yet remains computationally very efficient with the frs_mework of an implicit solution.

Step 1. Compute the right Cauchy-Green tensor

C = FrF (1.152)

and its square

C 2 = cTc (1.153)

where only the upper-triangular form of the symmetric products (6 terms) are actually com-

puted and stored.

Step 2. Compute the eigenvalues 22, 2 _2and 22 ofC. A Jacc, bi transformation procedure spe -
cifically designed for 3 x 3 matrices is used to extract the eigenvalues. For scalar computers,

the do-loops are eliminated by explicitly coding each off-diagonal rotation form. Two or, at
most, three sweeps are needed to obtained eigenvalues converged to a 10 -6 tolerance. The pro-

cedure vectorizes easily since there are no transcendental functions to evaluate; the number
of iterations is fixed at two or three for all material points Lu a contiguous block of elements.

Step 3. Compute invariants of U and the det(F)

Iv = 21 + 22 + 23 (1.154)

IIu = _122+ 22_z + _23 (1.155)

III U = 21_3 = J = det(F) (1.156)

Step 4. Form the upper triangle of the symmetric, right stretch, U, and it's symmetric in-
verse, U- 1 (see Hoger and Carlson [38])

U = _1q8_/+/_3C - C_) (1.157)

where I denotes a unit tensor with theft coefficients defined by

_ = 1/(IJIu- mu), f2 = IJHu, _3 = 1_- nu (1.158)

Similarly, the inverse of U may be formed directly as

U -1 -- y1(72 _ "t'- 73 c "F 74 C2) (1.159)

where the 7 coefficients defined by

71 = llIII.(IJlu - IIIu), 72 = IuIfu - Illu(I2 + lit]), (1.160)

73 = - IIIu - Iu(I2u - 2IIu), 74 = 1u (1.161)

Introduction 1.9-1 0 Chapter 1

User'sGuide_ WAR P3D Finite Strain Formulations

Step 5. Form R as the product

R = FU -1 (1.162)

Chapter 1 1.9-11 Introduction

Chapter 2

Model Definition

This chapter describes the commands to define a finite element model, to define a nonlin-

ear/dynamic solution algorithm, to request an analysis for a number of load steps and to

request output. Commands in this chapter are described in the recommended order of in-

put:

• structurename and sizes(number ofnodes and elements)

• definitionof"materials"forassociationwithelementsinthemodel.Materialsprovidelin-
ear elasticproperties,materialdensity,nonlinearpropertiesand a "type"ofconstitutive
algorithm,e.g.,rate-dependentMises plasticitywith isotropichardening.

• the typeofeach finiteelement in the model,the kinematicformulationforthe element
(largeor smalldisplacements)and the valuesofaaaypropertiesforthe dement, e.g.,the
orderofnumericalintegration

• theX-Y-Z coordinatesforallmodel nodes inthe model globalcoordinatesystem

• the incidencesforallelementsinthemodel.Incidencesdefinethe connectivityofelement
nodes tomodel nodes

• the assignmentofcontiguouslistsofelementsto"b_ocks"foranalysis.Blockingisrequired
tosupportparaUel/vectoroperationson supercomputersand isretainedforanalysescon-
ductedon Unix workstationstobeterutilizecachememory. Allelementsin a blockmust
be the same type,have the same materialmodel,the same type ofkinematicformulation.
For Crays and the LPCG solverwith the Hughes--Winget preconditioner,elements in a
blockmust not be connectedtoa common node.

• displacementconstraintsimposed on nodes ofthe model,eitherzeroornon-zero.

• loadingpatternsforthe model. Loading patternsconsistofnodal forces;element body
forces,facetractions,facepressureswhich areconvertedtoequivalentnodalforces;nodal
and element temperaturechangesrelativetoa zeroreferencestate.

• a nonlinear/dynamicloadingwhich definestheincrementofloadtobe appliedduringeach
load/timestep.Loading incrementsfora stepare definedusingthe loadingpatterns.

• parameters tocontrolthe nonlinear/dynamicsolutionprocess,e.g.,the timeincrementfor
dynamic analysis,the typeofequationsolver(direct,conjugategradient),the maximum
number ofNewton iterations,adaptiveloadingparameters etc.

• parameters tocontrolthe typeofcrackgrowth (noderelease,cellextinction)

• a requesttocompute displacementsfora listofloadsteps

• a requesttooutputcomputed nodal and element results.Resultsforuse by humans are
directedtothecurrentoutputdevicewithappropr:atepagination,headers,labels,etc.

• a requesttooutputcomputed nodaland elementr,;sultsinthe format definedby thePA-
tranmodelingso,ware.These resultsfilesarereadableby Patran withoutfurtherconver-
sion.

• a requesttocompute and outputvaluesfortheJ-integralinfracturemechanics models

• a "save" command to write all current, essential da_a structures to a sequential binary file
for later use to re-start an analysis.

• a "stop" command to terminate program execution

In typical analyses, multiple compute, output, J-inte_,ral and save commands appear in

the input. Parameters to control the nonlinear/dynamic solution algorithm, e.g., the time

Chapter 2 2.1-1 Model Definition

User'sGuide-- WARP3D

step, may be modified between analyses for sets of load steps. Constraints can be modified

between analyses for load steps to effect incremental changes in the boundary conditions.

Some model descriptors cannot be modified once defined. For example, the number of

nodes and elements, the element types and properties, the coordinates, the incidences and

the blocking cannot be altered.

2.1 Model Name and Sizes

The definition of a new finite element model begins with specification of an alphanumeric

identifier. The identifier appears on all pages of output. The command has the form

structure < name: label >

The first eight characters of model names are recognized. Longer names are accepted on
the command but truncated to the eight character limit.

The number of nodes and number of elements in the model must be specified prior to

any other command related to nodal or elemental quantities. WARP uses the specified sizes

to support checking of the input data as it is entered and to support exhaustive consistency
checking of the structural model for errors prior to the first compute request. An example
of such an error is a node with no elements attached. The model sizes are defined with a

command having the form

number (of)
It nodes 1 >_

elements < size: integer (,)

Examples of the above commands are:

structure bend_strip

number of nodes 3450 elements 4230

and

structure bend_strip

number of nodes 3450

number of elements 4230

All node and element identifiers are positive integers beginning with the value 1. Nodes
and elements must each be numbered sequentially.

Once specified, the number of nodes and elements cannot be modified through user com-
mands.

Limits on Number of Nodes and Elements

The maximum number of nodes and elements permitted in a model varies with the version
of WARP being executed and the computer executing the program. Typical limits are

25,000 nodes and 25,000 elements for a Unix workstation version and 100,000 elements

and 100,000 nodes for a Cray and SGI (Power Challenge and Origin 2000) versions. These
limits are easily changed through one line in the source code followed by a re--compilation

on the hardware platform.

Chapter 2 2.1-2 Model Definition

User'sGuide_ WARP3D Material Definitions

2.2 Material Definitions

Finite elements in a model are associated with "materials" from which they derive elastic

properties, mass density and nonlinear characteristics, if necessary. Through the material

command, the user specifies a convenient name for the material, the type of constitutive

model (e.g., rate-dependent Mises) and the values of any properties required by the materi-

al model. Material definitions must precede the specffication of element properties during

input.

Some models provide an option to specify nonlinear response in the form ofa piecewise-

linear description, i.e., a tensile stress-strain curve. The stress-strain curve command is
used to describe points on the piecewise-linear curve for use by the material model.

This section describes the material and stress-strain curve commands. When a material

command references a stress-strain curve, there is no requirement that the referenced curve

be defined previously. Consistency checks are performed prior to any computations.

2.2.1 Material Command

A material command on a separate line initiates the material definition sequence Any
number lines may follow to define the properties required for the material model. The deft-

nition of an element requires the following information:

The command syntax is

material < material id: label >

properties < model type: label > [< matl prop: label > (< value >)]

The logical input line for the properties may be continued over multiple physical input lines

with commas at any point. Subsequent sections in Chapter 3 define the "type" of material
models currently available and the properties required for each model type.

An example of material specification is

material a12024t

properties mises e 10350 nu 0.3 yld_/t 50.0 n_power i0,

rho 0.1254e-07 alpha 5.4e-06

In this example, the material is named "a12024t" and the computational model for the ma-

terial is "raises" (one of the models described in Chapter 3). Keywords "e', "nu', "n_pow-

er" are properties of the mises model assignable by the user.

The following example refers to stress-strain curve 3 for a piecewise-linear description
of the uniaxial, tensile stress-strain curve

material a36

properties mises e 30000 nu 0.3 curv£ 3 rho 0.1254e-07

Once defined, the specification for a material cannot be modified at any further point in

the analysis.

2.2.2 Stress-Strain Curve Command

The uniaxial, tensile stress-strain response of certain materials requires a general segmen-

tal curve description for a realistic representation, l_[aterials that exhibit a sharp yield
point, a Luder's band and then strain hardening are classic examples not amenable to rood-

Chapter 2 2.2-1 Model Definition

User'sGuide-- WARP3D Element Properties

eling with the power-law type curves. Figure 2.1 provides an example of a stress-strain

curve described with a piecewise-linear model.

80 I , , , I ' ' '

7O

6O

50

4o

o9
JO

20

10

m

m

m

Strains Stresses

0.0012 36

0.01 36

0.05 50

0 .i0 55

0.30 60

0 , , , , I , i i , I , I I I I I I

0.00 O. 10 0.20 0.30

I !

0.40

Strain

FIG. 2. l--Example of piecewise-linear stress-strain curve.

Points on such curves are specified with a simple command sequence stress-strain curve
where each such curve required in the analysis is assigned an integer number for identifica-

tion. The curve may then be referenced in a material command as described above. The

command syntax is

stress(-strain) (curve) < curve number: integer >

[< strain value: numr > < stress value: numr > (,)]

Curve points are input as strain-stress pairs; use as many lines as needed to specify the
points. Multiple pairs may be specified on a line. All strain-stress values must be positive.

Do not specify the (0,0)point on the curve. The first point defines the yield strain and yield
stress. Young's modulus specified in the material command must match the value implied

by the yield strain-yield stress pair. After the last specified point, the response is assumed

perfectly plastic.

The strain values input here are the total strains (not the plastic strains!). For large-de-
formation analyses, the values should correspond to the logarithmic strain-Cauchy stress;

for small strain-analyses the values should be engineering strain-engineering stress.

Chapter 2 2.2-2 Model Definition

User's Guide m WARP3D Material Definitions

A maximum of 10 curves may be specified for use in an analysis. Each curve may have

up to 100 strain-stress pairs defined.

The above curve is described with the command sequence

stress-strain curve 3

0.0012 36, 0.01 36, 0.05 50,

0.i0 55, 0.30 60

Chapter 2 2.2-3 Model Definition

User's Guide _ WARP3D Element Properties

2.3 Element Types and Properties

The types of finite elements and their properties are specified prior to any compute re-

quests. An elements command on a separate line initiates the element definition sequence.

Any number lines may follow to define the types and properties of all elements in the model.
The definition of an element requires the following information:

• the "type" of element (e.g. 13disop, ts15isop, etc.)

• the kinematic formulation (small or large displacements)

• reference to a previously defined "material" that defines elastic properties, mass denisty
and the nonlinear properties (if required)

• a list of element property identifiers and associated values, e.g., the order of numerical in-
tegration.

The command syntax is

elements

< element nos.: list >

material < matl. id:

< element type: label > l linear Inonlinear (')

label > [< elem. prop: label > < value >]

The logical input line may be continued over multiple physical input lines with commas at
any point. Subsequent sections in Chapter 3 define the "type" of elements currently avail-

able and the properties available for each element type. Element properties typically have

a property keyword followed by a value. Some element properties are '2ogical" values which
take on "true" values by the presence of the keyword.

The keyword linear requests a conventional small displacement, small strain element
formulation. This is the default formulation and is adopted if no specification is given. The

keyword nonlinear requests a geometric nonlinear formulation that models large rotations
and finite strains.

Every element must have an associated material. Materials must be specified prior to

their use in element specification.

An example of elements specification is

elements

1-40 type

500-i000,

13disop linear material a36 center_output bbar,

order 2x2x2

1200-200 by -2 q3disop nonlinear material al_2024t,

order 14pt_rule long

Once defined, the specification for an element cannot be modified at any further point in

the analysis.

Chapter 2 2.3-1 Model Definition

User'sGuide-- WARP3D Nodal Coordinates --

2.4 Nodal Coordinates

The coordinates of nodes are specified relative to the gtobal Cartesian reference axes. Dur-
ing model definition, the command coordinates initiates the translation of nodal coordinate

data. Any number of coordinates commands may be g_ven prior to a compute request. The

existing coordinates for nodes are simply overwritten by any newly specified values. The
input syntax is

coordinates (cleat')

< node number: integer > y < coord.
Z value: number > (,_

(_ node number: integer _ _ coord, value: number _ (7)---]

where the second form applies the default ordering ofentriesX-Y-Z. When using the second

form, coordinates not specified take on the last previously defined values. For example, the
sequence

coordinates

4 3.2 5.2 6.4

I0 4.1

defines the Y coordinate of node 10 as 5.2 and the Z coordinate of node 10 as 6.4. This fea-

ture may be suppressed by appending the word clear to the coordinates command line. The
default coordinates for every node are then 0.0 unless explicitly input. With this option for

the above example, node 10 is assigned coordinates of 4.1, 0.0, 0.0 rather than 4.1, 5.2, 6.4.

The default X-Y-Z ordering for the second input form may be modified by the default
coID/nand

coordinates

Elxlly
Z

_ node number: integer _ _ coord, value: number _ (_)_

where any number of default commands may be giver_.

Some examples illustrating various options to define nodal coordinates are given below.

coordinates
4 x 2.5 y 3.0 z 4.1
i0 Z -20 y 40 x 20

Chapter 2 2.4-1 Model Definition

User's Guide m WARP3D Nodal Coordinates

ii -5.23 6.23

default z y x

3 15.3 14.2 10.5

default x y z

I0 -13.5 10.5 -20.4

At any point during input of the coordinates, the dump command is available to request

a listing of current coordinates for all nodes of the model.

coordinates

4 x 2.5 y 3.0 z 4.1

i0 z -20 y 40 x 20

ii -5.23 6.23

dump

default z y x

3 15.3 14.2 i0.5

default x y z

I0 -13.5 10.5 -20.4

dump

Chapter 2 2.4-2 Model Definition

User's Guide -- WAR P3D Element Incidences

2.5 Element Incidences

Each node of an element in the model must be "mapped" onto the corresponding global
node. Element incidences establish this correspondence. During model definition, the com-

mand incidences initiates the translation of element incidence data. Any number of inci-

dences commands may be given prior to a compute request. The existing incidences for ele-
ments are simply overwritten by any newly specified values. The input syntax is

incidences

< element number: integer> I--< global node i: integer list> (,_

where <global node i> denotes the number of the global node to which the element node is

attached. Note that the list of global node numbers rray be specified as an integer list.

An example of the incidences command is

incidences

1 13-20

2 5 40 65 83 92 120 44 98

3 140-144 178 162 183

The number of entries in the integer list must equal the number of nodes on the element
(8 for 13disop, 12 for ts12isop, etc.). Error messages are issued by the input processor if the

number of nodes is less than required, if a node number exceeds the number of structure
nodes, etc. A warning message is issued if the same node appears more than once in the

integer list.

The ordering of nodes for each element is shown in Chapter 3 where the element library
is described.

Chapter 2 2.5--1 Model Definition
N

User's Guide _ WARP3D Element Blocking

2.6 Element Blocking

All element level computations in WARP proceed on a block-by-block basis to facilitate vec-

torization and parallel processing of element blocks. Each element must be assigned to a
block. The maximum number of elements in a block is set by a compile-time variable in the

WARP source code and is selected to optimize performance on specific types of computers.

On a CRAY-90, for example, the block size is 128 since the vector processor units have regis-

ters each of length 128 words. On a Unix workstation, the block size impacts the efficient

use of cache memory; large blocks cause severe thrashing in the cache. A typical block size
for a workstation is 32, 64, or 128. Blocking improves computational performance of the
code even on Unix workstations without vector hardware. Very efficient subroutines to per-

form common vector-matrix operations available on workstations provide the improved

performance during element level operations.

The assignment of elements to blocks is most conveniently handled by the pre-processor

software employed to create the finite element model. The patwarp program, for example,
converts a Patran neutral file into a WARP input file and performs the element-to-block

assignments. The block assignment commands have the form

blocking

< block • integer > < block size: integer > < first element in block: integer >

The following example

blocking
1 120

2 112
3 109

4 i00

5 42

6 24

7 ii

8 2

The following rules
a block

• must

• must

• must

• must

input describes the blocking for a model with 520 elements.

1

121

233

342

442

484

5O8

519

define the proper assignment of elements to blocks. All elements in

must be sequentially numbered

must be the same type; e.g., 13disop

have the same kinematic formulation (linear or nonlinear)

have the same associated material

have the same integration order (e.g. 2 × 2 x 2)

not share a common node if'.

• execution is on a vector/parallel computer (Cray, Convex)

or

• the Hughes-Winget pre-conditioner is selected for the conjugate gradient solver

This last requirement nearly always necessitates a re-numbering of the elements in the
model to eliminate node conflicts within blocks. The patwarp pre-processor, for example,

employs a simple "red-black" strategy to re-number elements before constructing the

WARP input file.

The input translators perform checks to insure that blocking assignments follow these
rules.

Chapter 2 2.6-1 Model Definition

User'sGuide_ WAR P3D Nodal Constraints _

2.7 Nodal Constraints

WARP currently supports constraints applied to nodes: (1) in the global, Cartesian system

and (2) in a local Cartesian system defined at selected nodes. The sequence is initiated with

the constraints command. When the constraints command is encountered by the input

translators, all previously defined constraints data are destroyed. Thus to modify
constraints between load (time) steps, all the constraints must be specified D not just the
constraints that have changed.

To define constraints in the global Cartesian system the input syntax is

constraints

< node list: list > v (=) < constrair_t value: number > (,)

w

Examples of global constraints input include:

constraints

i-I00 by 3 w 4.3 v 0 u 0

24 u = -1.3 w 0.0

2.7.1 Non-Global Constraints

The capability to specify constraints in non-global coordinates enables the analysis of skew
supports, for example, that arise naturally in structural systems or in 3-D models of axi-

symmetric structures. To define constraints in a non-global Cartesian system, consider the

simple problem shown in the Fig. 2.2. Here the global and local Z axes are aligned but the
local and global X, Yaxes are not aligned. The user defines a 3 × 3 rotation matrix of direc-

tion cosines which transforms global vector quantities into the local coordinate system. The

boundary condition shown is simply u = 0 in the local coordinate system. Transformation
matrices are specified with the command sequence:

constraints

transformation matrix < node list: list >

row 2

_ row 3
direction cosines:number>--]l

m

m

m,_t'

where any number of nodes may be associated with the specified transformation matrix;

the transformation matrix command may be repeated as necessary within the constraints

definition. In this example, the constraint is specified immediately following definition of
the transformation matrix although this is not required.

The input system verifies that the rotation matrix specified is orthogonal and that the

matrix pre-multiplied by its transpose is an identity matrix to within a tight tolerance.

Chapter 2 2.7-1 Model Definition

-- User's Guide -- WARP3D Nodal Constraints

YL - 5 0.86667

0.0

Xg rotation matrix

constraints

xg
0.0 Yg

1.

transformation matrix 32,

row_l 0. 86667 0.5 0.0,

row_2 -0.5 0.8667 0.0,

row_3 0.0 0.0 1.0

32 u = 0

FIG. 2.2---Example of Local Coordinate System for Constraint Specification

Users are aware of such local coordinate systems only during the specification of

constraints. Nodal loads and element loads are always specified in global coordinates. All

nodal output quantities produced by WARP3D are in global coordinates.

2.7.2 Constraints in Nonlinear Analyses

In a nonlinear analysis, the currently defined constraints are interpreted as the incremen-

tal displacement change enforced over the next load (time) step. A non-zero constraint is

enforced during the first iterative cycle for the load step. In subsequent iterations, no dis-
placement change is permitted on the constrained displacements to maintain the value of

the specified increment.

By default, the current set of constraints with a multiplier of 1.0 are imposed during

each nonlinear load step. Alternatively, users can specify directly the constraint multipler

in the definition of each load step (see Section 2.8.5).

2.7.3 Display of Current Constraint Data

Within the constraints command sequence, the dump command may be specified to request

a display (listing) of the current constraints information taken from internal tables.

Chapter 2 2.7-2 Model Definition

User'sGuide-- WARP3D Loads _

2.8 Loads (Including Temperatures, Displacements)

Loads and temperature changes may be applied to the nodes and elements of a model. Ele-

ment loads, which are dependent on the type of finite element, and nodal temperatures are
converted to equivalent nodal loads by element processing routines. Nodal loads and ele-

ment loads are grouped together to define loading patterns. The loading patterns define the
spatial variation and reference amplitudes of loads on a model. The constraints defined on

the model also represent a loading pattern but with a "built-in" name, i.e., constraints. Ex-

amples of loading patterns include dead load, an internal pressure, a localized temperature
increase and simple bending of a component.

Once loading patterns are defined, a nonlinear loading condition is defined. The term

dynamic may be used as a synonym for nonlinear if desired. A nonlinear/dynamic loading
consists of a sequential number of load steps. An incremental-iterative solution is obtained

for each load step. For dynamic analyses, a load step is the same as a time step. Each load

step may consist of loading patterns combined with scalar multipliers. The scaled values
of nodal forces (nodal loads and resulting equivalent nodal loads) and constraints for the

patterns are applied as the new incremental load to _le model during the step.

A static linear analysis must be performed as the _st step of a static nonlinear analy-

sis. A static nonlinear analysis is solved as a dynamic analysis with: (1) a very large time
increment or (2) zero mass for the model. The user selects one of the two procedures by set-
ting the time increment and the model mass.

The first sections describe the commands to define nodal forces and element loads that

construct a loading pattern. Commands are then defined to specify load steps in a nonlin-
ear/dynamic analysis (or step 1 of a static, linear anaysis).

2.8.1 Loading Patterns

A new loading pattern is defined through a command of the form

< loading identifier: label >

where the loading identifier is used in subsequent co:_£mands to identify the loading, for

example, in compute and output requests. Only the fi::st eight characters of the identifier
are processed; all loading patterns must have unique identifiers.

When an existing loading pattern is referenced in _his command, newly specified node

and element loads are added to the previously specified loads for that loading pattern. If
the command references an existing nonlinear loading condition, the previously defined in-

formation for all steps is destroyed and replaced by the newly specified input.

Specified temperature values represent relative changes from an aribitrary (uniform)
reference temeperature for the model.

mi#

mm¢

Chapter 2 2.8-1 Model Definition

User'sGuide-- WARP3D Loads

2.8.2 Nodal Loads

A sequence of nodal load definitions has the form

nodal (loads)

) fo __Q_ae_
< node list: list > _ force z

tem__m_p_Eature

(=) < value: number > (,)

Nodal loads are additive; if the same node and direction appear in two different loading
commands the sum of two loads is applied to the model. An example sequence to define a

loading condition and a set of nodal forces is

loading unit_pull

nodal loads

1-40 60-90 force_z -2.3 force_x 14 temperature -42.3

3240 3671 4510-5000 force_z -3.12

35 temperature 145.0 force_x 2

In the above example, node 35 has a total force in the X-direction of 16 (14 _om the first
line + 2 _om the last line), in addigon to a net temperature change of 102.7.

2.8.3 Element Loads

A sequence of element load definitions has the form

element (loads)

< elements: list >

< elements: list >

< type of element loading >

< type of element loading >

where the <type of element loading> is either a body force, a face traction with constant

direction, a face pressure, or a uniform temperature change for the entire element. The

types of element loads and commands to define them are dependent on the type of element.

Refer to Chapter 3 for this information.

When the analysis includes geometric nonlinear effects (large displacements), equiva-
lent loads for the incrementally applied surface tractions are re-computed at the beginning

of each load step using the current (deformed) geometry of the elements.

Nodal forces are always applied in the global coordinate system and are thus unaffected

by the deformed geometry.

2.8.4 Step Loads

The loading type designated dynamic or nonlinear defines the combinations of pattern
loads for each time step in a dynamic analysis or each load step in a static nonlinear analy-
sis. These commands have the form

Chapter 2 2.8-2 Model Definition

User'sGuide-- WARP3D Loads

< loading identifier: label >
nonlinear

st_!_s < steps: list > [< pattern id: label > < multiplier: number > (,)]

where the keyword dynamic may be substituted as a synonym for nonlinear. Nodal and ele-

ment loads cannot be specified within a nonlinear/dynamic loading definition above. The

multiplier value must follow each pattern id m a multiplier value is required input. As indi-
cated, multiple pattern loads may be combined with different multipliers to define a load

increment for a time step in a dynamic analysis or a load step in a static nonlinear analysis.

By default the existing constraint definitions are included in each load step with a mul-

tiplier of 1.0. The constraints used in solution for a load step are the constraints defined at
the actual solution time for the step (users can re-define the constraints data at any time-

the 1.0 multiplier applies to the currently defined constraints at step solution time). The

user may include constraints as a loading pattern with a multiplier other than 1.0.

An example of this command sequence is

loading crush

nonlinear

steps 1-10 unit_pressure 2.3 unit tens -1.2 constraints 1.0

steps 11-200 pull 0.2 constraints 2.3

where the loading patterns unit_pressure, unit_tens andpull have been defined previously.

Although the steps are defined in ascending sequence in the above example, the steps may
be defined in any order; the final set of steps must comprise a sequential list.

Modifying Step Definitions

During the course of a nonlinear or dynamic analysis_ it is often necessary to define addi-
tional steps or to modify the definition of steps yet to be analyzed. For example, previously

defined, but unsolved, load steps may need to have a reduced multiplier based on current

convergence properties.

Two approaches are available to perform this task. In the first approach, a new nonlin-
ear/dynamic loading condition may be defined with the desired definition for the new/modi-

fied load steps. Subsequent compute requests then reter to this new loading. In the second
approach, the existing nonlinear/dynamic loading con _lition is redefined. The input trans-

lators require that all load steps 1, 2, 3,... be re-definec with this approach. A warning mes-

sage is issued to the user about this feature when an existing nonlinear/dynamic loading
condition is redefined.

2.8.5 Displacement Control Loading

A nonlinear/dynamic loading condition with appropri ate step definitions must be always
be specified for a model. This becomes a slight inconveJ dence when the model is loaded only

by imposed non-zero displacements at selected nodes. '['he recommended procedure for dis-

placement control loading is:

• define a loading pattern "dummy" with a meaningless, zero nodal force (put a force of 0.0
on one node)

• define the nonlinear/dynamic loading condition. All steps refer to the loading pattern
"dummy" with a multiplier of 1.0.

This procedure forces the processing routines to create the necessary internal data struc-

tures required for an analysis. An example of these commands is

loading dummy

nodal loads

W

Chapter 2 2.8-3 Model Definition

User'sGuide.--WARP3D Loads

1 force_x 0.0

loading crush

nonlinear

steps i-i00 dummy 1.0 constraints 1.3

Effects of Step Multipliers

The pattern multiplier (1.0 above) plays no role in the solution of displacement control Ioad-
ings unless the extrapolate option of the nonlinear solution algorithm is invoked (extrapo-

late is on by default). When the extrapolate option is in effect, the incremental displace-

ments computed from the solution over step n-1 to n are scaled and applied to the model
to start the iterative (Newton) solution from n to n+l. The displacement scaling factor is

computed from the specified step multipliers for steps n (say fn) and n+l (fn+l) as fn+l/fn.

Thus only the ratios of the multipliers are significant for displacement control with extrapo-
late on. When the non-zero constraints are modified during a displacement control analysis,

the loading step multipliers must be modified accordingly by the user; otherwise the extrap-

olation ratio (fn+l/fn) is computed incorrectly.

To illustrate, consider the following example. Non-zero constraints are specified to load

the model. The dummy loading pattern and nonlinear loading are defined as above with

step multipliers of 1.0 for load steps 1-10. After step 10, the user modifies the constraints
to reduced the imposed increment (uniformly) by one-half, possibly to reduce the number
of Newton iterations for convergence in subsequent steps. Load steps 11, 12, 13, ... must

have a multiplier of 0.5 for correct extrapolation. In step 11, the extrapolation multiplier

is 0.5/1.0 = 0.5 while in steps 12, 13, ... the multiplier again becomes 1.0.

Chapter 2 2.8-4 Model Definition

User'sGuide-- WARP3D Solution Parameters

2.9 Solution Parameters

The nonlinear (and dynamic) computational procedure in WARP follows an incremental-it-

erative strategy with full Newton iterations to eliminate residual nodal forces caused by
nonlinear behavior. The user has full control over the solution procedures through a wide

range of parameters. Each of the parameters has a btnlt-in default value which may be re-
defined by the user. The values of these parameters are declared by the user before com-

putation begins for the first load step; those values remain in effect unless modified by the
user as the solution progresses through the load steps. New values for these parameters
may be defined whenever the input translators accept new input lines. The most current

values of the parameters then control subsequent computations over load steps.

The specification of solution parameters begins with a command of the form

I solution)nonlinear _, (analysis) (ap____meters)
dynamic)

and terminates whenever a command is given that does not define a parameter controlling
the analysis. The following sections describe each of the parameters assignable by the user

and the command syntax. An example defining values for selected solution parameters is
shown below for reference.

dynamic analysis parameters

solution technique Inpcg

preconditioner ebe

inr_pcg cony test res tol 0.01

maximum linear iterations 2000

maximum iterations i0

convergence test norm res tol .5

time step 0.05

trace solution on

linear stiffness iteration one off

c

c

compute displacements for loading dead_live step 1-5

m

w

2.9.1 Linear Equation Solvers

The linearized set of equilibrium equations for the model is solved by one of three computa-

tional procedures. The first is a "direct" solver which a_sembles the upper-triangular stiff-
ness matrix for the model (in profile format) and executes a conventional Choleski factor-

ization, forward load pass and backward load pass. _ae second is a "direct" solver which

employs sparse matrix technology with Choleski factorization, forward load pass and back-

ward load pass. The multi-minimum degree re-ordering of the equations adopted in the
sparse solver dramatically reduces memory and CPU requirements compared to the con-

ventional direct solver. More efficient, platform specific versions of the sparse solvers are

also available. The third is an iterative, element-by-eh :ment, linear preconditioned conju-
gate gradient solver (LPCG). This solver does not asse_ able the structural stiffness matrix

and thereby greatly reduces memory requirements. A choice of two preconditioners is avail-
able: (1) a diagonal preconditioner which employs the diagonal terms of the dynamic stiff-

ness for the model, and (2) Crout factorization of the "regularized" dynamic tangent stiff-

ness (implemented on an element-by-element basis as outlined by Hughes-Winget).

Chapter 2 2.9-1 Mode/Definition

-- User's Guide _ WARP3D Solution Parameters

Direct Solvers

The direct solvers provide an "exact" solution for the linearized equations within round-off
features of the computer hardware. The direct solver is recommended for all problems

smaller than a few hundred nodes and for all problems in which 3-D elements model a

plane-stress, plane-strain or thin plate-shell type structures. Such models have very large

in-plane dimensions and only one or two elements in the thickness direction.

The conventional direct solver which assembles the full upper-triangular profile be-

comes inefficient very quickly as the 3-D nature and size of the model increases-- ineffi-
cient in terms of both required memory for the assembled stiffness and the factorization

time. The sparse version of the direct solver should be used for larger models. On Unix work-

stations, the sparse direct solvers remain competitive with the conjugate gradient solver

for very large models. Memory requirements for the sparse solver are many times smaller
than those of the conventional direct solver.

The direct solver is the default computational procedure in WARP and is explicitly spe-
cified with the command

solution (technique) direct

To request the generic sparse solver available on all platforms, simply append the key-

word sparse after the keyword direct.

solution (techniaue) direct

To request the sparse solver on HP workstations installed, simply append the keyword

hp after the keywords direct sparse.

solution (technique) direct _ h_p_

The HP supplied sparse solver is highly tuned for the PA RISC architecture. It runs in-core

only at present.

To request the sparse solver on Cray computers which have the Boeing BCSLIB
installed, simply append the keyword bcs after the keywords direct sparse.

solution (technique) direct _ bcs

WARP invokes the BCSLIB solver using an out-of-core algorithm with minimum memory

use requested.

To request the vendor supplied sparse solver on SGI computers, simply append the key-

word sgi after the keywords direct sparse.

For parallel execution on SGI computers, be sure to set the number of threads through an

environment variable before running WARP3D. The SGI solver may also be executed in an

out-of-core mode to reduce the real memory requirements (non-parallel execution only). Us-

ers specify the amount of real memory that the solver may allocate (in mega-bytes) and the

Chapter 2 2.9-2 Model Definition

User'sGuide_ WARP3D Solution Parameters

solution (techniaue) direc____lt_

directory on which it writes scratch files. The commands to invoke these options are:

solve__.__zrout(-of-core) I _-_ I

W

solver memory <memory:numi> w

solver scratch directory <directory:string>

where the full path name for the scratch directory must be specified (no ~ for example in
the path name). The default scratch directory is/usr/tmp.

Conjugate Gradient Solver

The linear preconditioned conjugate gradient (LPCG) solver iteratively improves an initial
estimate for the solution of the linearized equilibrium equations. The iterations continue

until further changes in the displacement increments :field no significant improvement in
the solution.

The element-by-element implementation of the LPCG solver eliminates construction
of the assembled stiffness matrix. Memory requirements for the LPCG solver are thus

many times smaller than for the direct solver. A 7,000 element/node model runs without
(virtual memory) paging on a 64 MB Unix workstation.

The number of LPCG iterations required to converge on the correct displacement incre-

ment varies with the characteristics of the model. The very best convergence rate derives
from a model of uniformly (cube) sized elements arranged in a cube. In this case, the diago-
nal preconditioner (DPC) provides a solution in a number of LPCG iterations less than the

square root of the number of active nodal degrees of freedom (dof). The DPC performs excep-
tionally well in dynamic analyses with small time increments. Some models that exhibit

very poor LPCG convergence with DPC in static loading converge very rapidly in dynamic
loading. For non-uniform element sizes, large time increments in dynamic analyses, de-

creased "three-dimensionality" of the model and increased nonlinearity, the number of
LPCG iterations may exceed 3-5 x (active no. of dof) 1/2.

Fracture mechanics models with focused meshes snd orders of magnitude variations
in element sizes define a very difficult configuration for the LPCG solver. For models at the

extremes of these conditions, a solution may not be possible with the DPC. The Hughes-
Winget preconditioner (HWPC) is available for LPCG solution in these models. The HWPC

increases the computational cost per LPCG iteration by a factor of = 2.1-2.3 x the cost per
DPC iteration. The HWPC produces a converged solution in nearly all cases which fail with

the DPC. Moreover, when both DPC and HWPC produce solutions, the number of LPCG

iterations with HWPC is often 0.3-0.4 x the number o:" DPC iterations which yields a net

reduction in total solution times. Numerical experimeiLts with large models provide guid-
ance on the optimum choice of a preconditioner.

The LPCG solver employs the following convergence test to assess the solution quality.
Let r 0 be the residual vector for solution of the linear equations evaluated for the initial (es-
timated) displacement increment:

PC

W

Chapter 2 2.9-3 Model Definition
m

User's Guide -- WARP3D Solution Parameters

K D.Au 0-zip =r 0

where K D denotes the dynamic stiffness. The initial displacement vector Au 0 is set to zero
except those for non-zero terms of the user specified (current) constraints. The vector ZiP
denotes the incremental load. During Newton iteration 1, _ contains the applied load over

the step {including inertia effects); during subsequent iterations, _P contains the residual
load. LPCG iterations continue until at the kth iteration with Au k available

llr, ll <-(usertoZ/lO0) × IIroLI

where II]1denote the Euclidean norm. Tolerance values are specified in (%); thus, a user tol-
erance of 0.01 (%) is reasonably strict and often used. Tolerance values of 0.001-1.0 have

been used successfully in various models. The user specified tolerance exerts a dramatic

impact on the required number of LPCG iterations and the total CPU time. Excessively

tight tolerances do not provide real improvements in solutions. If the model has a linear
elastic material and a kinematically linear formulation, the convergence tests performed

after the first Newton iteration of a load step provide a very good indicator of the linear solu-

tion quality. An excessively large residual indicates that a smaller LPCG tolerance value
is needed.

The approximate nature of LPCG solution provides an opportunity to balance accuracy

and CPU time for linear equation solving with the number of Newton iterations reqmred

to eliminate residual forces arising from nonlinear behavior. During the first few Newton
iterations of a load step, excessive accuracy dunng solution of the linear equations is often
ux_-warranted as the force imbalances due to nonlinearity far exceed those due to remaining

errors in displacement increments from the LPCG solver. The Newton iterations correct,
simultaneously, the incremental displacement vector for the step due to nonlinear effects

and due to small residuals in the LPCG solver. Experimentation with LPCG and Newton
tolerance values in nonlinear analyses often yields substantial decreases in total solution

times.

The program terminates execution if the specified number of LPCG iterations is exceed-
ed (the default limit is 10 iterations).

The commands to specify a LPCG solver have the form

solution (technique)

preconditioner (__.e_) t
hu__u_gb_es-wingetdiagonal It

(con.__.yvergence)(tests) re_3sidual(tolerance) < number >

maximum li_near iterations < integer >

trace Inpcg-s°luti°n I o_ I__

An example is

nonlinear analysis parameters

solution technique lnpcg

preconditioner hughes-winget

inpcg conv test res tol 0.01

maximum linear iterations 2000

Chapter 2 2.9-4 Model Definitbn

User'sGuide_ WARP3D Solution Parameters _

During solution of a large nonlinear model, the LPCG solver with the DPC may converge
very rapidly during early load steps when nonlinear effects remain small. Once the DPC

requires an excessive number of LPCG iterations in later load steps, the preconditioner can
be switched to ebe.

2.9.2 Dynamic Analysis Parameters

The time increment over each load step and the _ factor for the Newmark time integration
scheme are defined by the commands

time step_ < number >

n.0_ewmarkbeta< number >

The default time step size is 1000000 and the default value of the Newmark_ factor is 1/4.

Static analyses in WARP are achieved by using a very large time step or by setting the
model mass to zero. The time step must be a positive number. By setting a realistic time

step for the analysis with a zero mass, analyses for viscoplastic effects may be performed
without inertia effects.

2.9.3 Newton Iteration Parameters

The nonlinear solution in each load/time step is accomplished with a full Newton iterative

procedure by default. The dynamic tangent stiffness is updated prior to each equilibrium

iteration and at the beginning of the step. Newton iterations are numbered 1, 2, 3, ... where
the increment of applied forces and imposed displacements comprise the load vector for it-

eration 1. During subsequent iterations, the load vector consists of the current (total) resid-

ual forces. Users may request use of the linear-elastic stiffness for the solution of iteration
1 with a command of the form

lllinear stiffness (for) iteration one _ffff

This option enhances convergence when the incremental load during the step causes in-

elastic unloading. The default value is off.

Maximum Iteration Limit

The upper limit on Newton iterations is defined b:z

maximum _ations < integer >

The default limit is 10.

Minimum Iteration Limit

The minimum number of Newton iterations defaults to 2. This prevents the "extrapo-

lated" displacement increments from being accepted as the solution (see Section 2.9.7).
Such circumstances may develop due to insufficiently strict tolerances on the convergence

tests. For linear analyses or a solution strategy with the displacement extrapolation option

turned off, the minimum number of iterations may be set to 1.

minimum iterations < integer >

The default limit is 2.

mIB

Chapter 2 2.9-5 Model Definition

User'sGuideD WARP3D Solution Parameters

Nonconvergent Solutions

By default, the program terminates execution if Newton iteration limit is reached with-

out convergence. Users can request that program execution continue to the next load step
with the command

nonconvergent solutions! _ t
continue)

Convergence Tests

Four types of tests are available to assess convergence of the Newton iterations. Define

the following quantities:

IIRk II Euclidean norm of the residual force vector for the model following solution
of iteration k of the step

- R(_)Imax[abs k J maximum (absolute) entry in the residual force vector for the model follow-
ing solution for iteration k of the step (only active dof are considered)

IIP II Euclidean norm of the total force vector applied to the model (includes reac-
tions at constrained dof and inertia effects)

IIAUl II Euclidean norm of the incremental displacement vector for the model com-
puted during iteration 1 of the load step

IIAuk II Euclidean norm of the incremental displacement vector for the model com-
puted during iteration k of the load step

• u(i)]max[absz_ k J maximum (absolute) entry in the displacement vector for the model follow-
ing solution for iteration k of the step

the numerical average of all forces (absolute value) applied to the nodes in-
cluding: internal element forces due to stresses, inertia forces, reaction
forces and externally applied nodal/element forces

Using these quantities, the four convergence tests are defined as follows:

Test 1: IIAuk II <- (usertol/lO0) x It AUl H

Test 2: IlRkl I _ (usertol/lO0) x IIPII

Test 3: max[absAu_ i)] <_ (user tol/lO0) × II li

Test 4: max[absR_)] < (user tol/lO0) x

where II II denote the Euclidean norm. Multiple convergence tests may be defined; conver-
gence requires satisfaction of all tests. Tolerance values are specified in (%); thus, a user
tolerance of 0.01 (%) is reasonably strict and often used. Tolerance values of 0.001-0.5 have

been used successfully in various models. The user specified tolerance exerts a dramatic

impact on the required number of Newton iterations and the total CPU time. Excessively

tight tolerances do not provide real improvements in solutions.

Also note that these are relative tolerance tests and the choice of physical units affects

the corresponding absolute tolerance. For example, a user tol of 0.01 that may be suitable

for a problem with forces in units of kips might be absurdly stringent if the force units in
the same problem are given in pounds-force instead. This has importance, for example, in

fracture problems where the actual residual force values on nodes in the crack front region

must be controlled carefully.

Commands to define the convergence tests are

where the test types parallel the four tests defined above. The command to define Tests 1

and 2 is:

di__p_/acement Inorm residual (load) tolerance < tolerance: number >

Chapter 2 2.9-6 Model Definition

User'sGuide-- WARP3D Solution Parameters

convergence (tests) [< test type>]

Similarly, command to define Tests 3 and 4 is:

_di___pJacement t
maximum _,residual (Ioad)D tolerance

An example of convergence test commands is:

nonlinear analysis parameters

maximum iterations i0

convergence test norm res tol O.Ol

nonconvergent solutions continue

< tolerance: number >

maximum displ tol 0.01

2.9.4 Adaptive Step Size Control

In a nonlinear analysis (static or dynamic), it is often difficult to estimate a priori the ap-

propriate load step sizes which provide rapid convergence of the Newton iterations. WARP
provides a simple facility to reduce automatically load step (and time step) sizes when the

solution appears to be diverging or converging slowly. By default, the adaptive step size fea-
ture is not used.

The adaptive algorithm is very simple. When the user specified limit on Newton itera-

tions is reached and the solution has not converged, the load step (and time step) is subdi-
vided into four (4) equal increments and the solution for the load step restarted. Steps are

not renumbered during this process so that output messages indicate four solutions of the

same load step. The output messages indicate which fraction of the user specified load step
is being analyzed, e.g., 0.25 to 0.5.

Material models may also request an immediate load step reduction when the adaptive

solution strategy is enabled. State variable updating may experience convergence difficul-
ties requiring a reduction in load step size.

In geometrically nonlinear analyses, unusually large displacement increments may

lead to a zero or negative deformation Jacobian at Gauss points in elements. When this

condition is detected during strain computation, and adaptive solution control is on, the

solution processor terminates further computations and immediately reduces the load step
size. When the adaptive option is off, the solution processor terminates execution of WARP.

If the solution does not converge in any one of the 4 subincrements, that subincrement

is further subdivided into four more increments and the solution restarted. Only two such

levels of step reduction are permitted; nonconverged soi_utions at the second level cause pro-
gram termination. In many cases, the first level of step reduction is sufficient. In other

cases, one or more of the 0.25 fractions must be subdivided to obtain convergence. The adap-

tive algorithm performs level two reduction only for the level one fractions that do not con-

verge.

The command to control adaptive load step sizes i_

a___q_jive (so_lution) l °o_ff I

When the adaptive procedure restarts the analysis for a load step or subincrement, it forces

the first iteration to be resolved using the linear stiffness for the model. This is required

Chapter 2 2.9-7 Model Definition

User'sGuide-- WARP3D Solution Parameters

since the current estimate for the solution at n+l is not valid for use to recompute element

matrices. The full Newton process resumes at the next iteration. WARP manager routines

handle these processes automatically.

Adaptive load step control is strongly recommended for users attempting the nonlinear

solution of new classes of problems until experience with the convergence characteristics are

known. For parametric studies of problems with well known convergence characteristics,

adaptive load step control should not be used as it often dramatically increases analysis run
times (the code repeatedly learns what size steps converge!). Analyses run much faster

when the user specifies load step sizes known to exhibit good convergence characteristics.

Non-Zero Constraints

When a load step is subdivided, the non-zero constraints (e.g., Au l0 = 0.1) imposed by

the user are reduced by the same adaptive factors as the step load. The actual constraint

values specified by the user and stored in program data structure are not modified. Rather,
scaled values are imposed during the equation solving process.

2.9.5 Batch Status Messages

During solution of a large nonlinear problem in batch mode (e.g. on a Cray), it proves conve-
nient to have occasional information about the progress of the solution (load step/iteration

number, convergence rate, etc.) WARP provides an option to produce status messages inde-

pendent of the normal (standard) output file for the job. A status file is updated after each
equilibrium if each step. This file is named <structure id>.batch_messages. In Unix, users
can invoke the tail command on this file during execution to examine the last few lines. The

typical last few lines of this file can appear as:

newton convergence tests step: I00 iteration: 5 @ cpu: 43.6

completed fraction over step: 1.00000

maximum residual force: 0.179549E+00 @ node: 1356

test 2: norm of residual load vector: 0.13631E+01

norm of total load vector: 0.23237E+01

ratio*100: 58.66192

If the batch message file exists from a previous analysis, the new information over-

writes the old file. By default, no batch message files are written. The command to control

batch messages is

0a'c"' essa0es I I
2.9.6 CPU Time Limit

On some systems, batch jobs are executed with a user specified limit set on the CPU time

for the job. If the WARP execution exceeds the CPU time limit, the program is aborted by

the operating system and all results after the last written restart file are lost. Estimating
the required CPU time for highly nonlinear problems may be very difficult, especially when

similar problems have not been executed previously.

To help users with this problem, WARP provides its own cpu time limit feature. The user
informs WARP of the allowable CPU time (in secs) for the job. At the beginning of the solu-

tion for load step n+l, WARP assumes that the solution time for the step is the same as the

Chapter 2 2.9-8 Model Definition

User'sGuide_ WARP3D Solution Parameters _

time required the solution of load step n. The total CPU time estimated to advance the solu-

tion through load step n+l is computed using this procedure and compared to the user spe-
cified limit. If the estimated time exceeds 90% of the user limit, WARP writes a restart file

named xxxxx_overtime_db for load step n and terminates the job (xxxxx denotes the struc-
ture name).

The command to control this option is:

_C.P_U_(time)(limit) t o__n< limit: secs > t
_ (off)

By default the cpu time limit feature is off.

2.9.7 Displacement Extrapolation

In nonlinear analyses, the use of an extrapolated displacement vector frequently enhances

the convergence rate of the Newton iterations-- especially for "smooth" responses in plas-

ticity. The incremental displacements computed from the solution over step n-1 to n are
scaled and applied to the model to start the iterative (Newton) solution from n to n+l. The

displacement scaling factor is computed from the spev_fied step multipliers for steps n (say

fn) and n+l (fn ÷1) as fn ÷l/fn. Alternatively, users may _pecify directly the multiplier value.
Only one loading pattern (constraints do not count)is permitted in the step definition when
the extrapolate option is in effect.

The extrapolated displacement vector is employed at the beginmng of load step n+l to

compute a set of incremental nodal forces for application to the model during iteration 1.
The strains/stresses/internal forces are updated for the extrapolated displacement vector

but the material states are not retained for the next iteration. New nonlinear response (e.g.,

first time yielding) is prevented during this updating process.

When the non-zero constraints are modified during a displacement control analysis,

the loading step multipliers must be modified accordingly by the user; otherwise the extrap-

olation ratio (fn+l/fn) is computed incorrectly. To illnstrate, consider the following example.
Non-zero constraints are specified to load the model. The dummy loading pattern and non-

linear loading are defined as above with step multiphers of 1.0 for load steps 1-10. After step
10, the user modifies the constraints to reduced the imposed increment (uniformly) by one-

half, possibly to reduce the number of Newton iterations for convergence in subsequent

steps. Load steps 11, 12, 13 must have a multiplier of 0.5 for correct extrapolation. In
step 11, the extrapolation multiplier is 0.5/1.0=0.5 wl_ile in steps 12, 13, ... the multipher

again becomes 1.0.

The command to control displacement extrapolation is

extrapolate I °_ ((multiply)(b_bJL)< scale factor: number>) I

When the multiply by option is given, the user specii_ed scale factor supercedes the com-

puted scale factor.

Numerical experiments reveal significant improvements can be obtained in the New-

ton convergence rate for displacement controlled loading with minor or no effect for analy-
ses conducted under load control. For this reason, extrapolate on is the system default. The

extrapolate option is correctly processed when used with adaptive load step control. For

Chapter 2 2.9-9 Model Definition

User'sGuideD WARP3D Solution Parameters

simple linear, dynamic analyses, we recommend using extrapolate off to eliminate spurious

iterations created by inaccuracies in the the extrapolation procedure.

2.9.8 Material Model Messages

The material models have built-in features to print status messages during stress update.

An option is provided to suppress all such informative messages generated by material
models. Messages about severe conditions in the material models are not suppressed with

this option. For example, the material model may request an immediate load step reduction

when adaptive load control is enabled. In such cases, the material model prints a message
to this effect with the reason it requests a load step reduction. The command to control

printing of informative material messages is:

I I
Material messages are on by default.

2.9.9 Solution Status Messages

The nonlinear solution process for a step and iteration involves many processes such as

stiffness update, strain update, stress update, convergence tests etc. WARP outputs mes-
sages indicating when these processes start-finish and the detailed results for convergence

tests. For users familiar with the code, most all of these messages can be suppressed with
the show details command which has the form:

sh°w(details) I °nloff

Detailed messages are on by default. This option has no effect on the batch message feature.

2.9.10 Residual Loads Printing

Residual forces at nodes may be printed during Newton's iterations to facilitate debugging

of problems which exl_bit unusual convergence. To request printing of residual loads, use
the command

residual (loads) (for) (iterations) < integer list >

Residual loads printing is off by default.

2.9.11 B-Bar Element Stabilization

The Bmodification of the 8-node, trilinear element has the potential to introduce hourglass

modes. Section 3.1.7 describes a simple procedure that can often suppress such modes. The
user controls the amount of stabilization with the command

bbar (.stabilization) (factor) <nurnr>

Chapter 2 2.9-10 Model Definition

User'sGuideu WARP3D Solution Parameters

where the numerical value ranges from 0.0 (no stabilization) to 1.0 (no B-). The default value

for this factor is 0.0. Values not exceeding 0.10 are often used.

2.9.12 Consistent [Q] Matrix

The consistent tangent modu]i for the incremental plasticity models (raises, gurson) include
the so-called [Q] matrix for the finite strain formulation (see Section 1.9.4). This matrix

most often enhances the convergence rate of global Newton iterations but there are occa-

sionally instances when it slows convergence.

An option exists to omit the [Q] contribution under control of the user. The user controls
this option with the command

consistent ._q(-matrix) I °o-_ I

The default value is on.

m

Chapter 2 2.9-11 Model Definition

_ User's Guide --WARP3D Compute Requests

2.10 Compute Requests

Solution For Load Steps

The nonlinear (and dynamic) solution for a series of one or more load steps is requested with
the command

comj2ute dis__pJacements (for) loading < nonlinear load id: label >
(for) st_Le..es< integer list >

A comma may be used anywhere in the line for continuation. WARP compares the last step

number solved against the list of steps provided. A list of steps for computation is generated

from this process and computations initiated. For example, let steps 1-10 be analyzed in
the first compute command. The second compute command requests computation for steps

20-25. WARP automatically inserts steps 11-19 into the list of steps for computation.

WARP verifies the data provided in this command for correctness, e.g., the nonlinear

load must exist and the steps requested must be defined in that load step. When errors are

encountered, the command is ignored and a new input line read.

Once this command is accepted and computations begin, the user cannot intervene in

the solution process until the analysis for all steps in the list is completed.

Examples of compute commands are:

compute displa load test steps 1-20

compute displacements for loading crush for steps 15-30

Domain Integral (J)

Once the solution for a load step is available, a domain integral evaluation to compute the

J-integral may be requested. The domain(s) for computation must be defined immediately
prior to the compute request. Chapter 4 describes commands to define domains for J com-

putation. The compute command has the form

commute domain (_)

Chapter 2 2.10-1 Model Definition

User'sGuidem WARP3D Output Requests _

2.11 Output Requests

The output command provides computational results in three forms:

• printed output with page and column headers

• Patran (2.5 compatible) nodal result files in either binary or ASCII formats.

• Patran (2.5 compatible) element result files in either binary or ASCII formats.

• creation of a Patran neutral file (2.5 compatible) for the model (coordinates, incidences,
constraints).

Output commands must be given immediately after completion of the solution for a load

step. Once the solution for load step n converges, WARP immediately updates all internal
variables to prepare for solution of step n+l; only results for load step n are available for

output.

2.11.1 Printed Output

The command to request printed output has the form

eformat i I _ nodes

__E_e.__ision_< quantity: label > (for) _ elements

where

< quantity >

< integer list >

is one of the following d,_j_acements, J_e!ocities, accelerations, strains,
stresses, reactions

The destination for printed output is the current output device specified by the user. The

output device is either a disk file or the workstation display. The output file is declared us-

ing the standard output (i.e., the < file name) convention of Unix on the program invocation
command or through the *output to <file> command available in WARP (refer to Section

2.13 for a description of * commands).

By default, output routines which generate printed results format values to fit on an

8.5 in. x 11 in page oriented in portrait mode. The wide option permits extension of output

up to 132 columns for eventual printing in the landscape orientation.

Numerical results are printed with an F12.6 format. An E12.5 format is requested with

the eformat option. These precision option increases these fields to F26.16 and E26.16.

When a list of elements is specified for output of displacements, velocities, accelerations

or internal forces, results are printed for the nodes _f each element in the list (not the

merged set of nodes for all elements in the list). Only lists of elements are permitted for out-
put of strains and stresses. When the < integer list > of elements/nodes is omitted, the re-

sults are printed at all elements/nodes of the model.

Reactions are external forces required for equilibrium at constrained nodal dof; at un-

constrained nodal dof, they are the remaining force imbalance due to nonlinear response

and]or linear equation solving. These forces include :he effects of inertia loading on the
model. Separate algebraic sums oftheX, Y, Z compone its of these forces are printed follow-

ing the nodal results to assist in the checking of reactions.

All strain/stress quantities refer to the global Cartesian coordinate system for the mod-

el. The number of strain/stress items printed for each element and the number/location of

the points with printed results are specified with element properties. For example, the ele-

Chapter 2 2.11-1 Model Definition

User's Guide -- WAR P3D Output Requests

(S) e=, ey, e_, y=y, 7yz, 7=

v_ _(Ex Ey)2 + (% ez) 2 + (ex -- ez) 2 + 1.5(72 + 72 + 7=2)(S) %ff = y -

I 1 = ex +ey+ez

13 = e=(eyez - e_z) - e=y(e_ez - %:=) + e=(ex/y, - eye=)

E 1 <-- E2 <-- E3

ll, ml, n 1

12,m2,n 2

13,m3,n 3

(Principal strain values)

(Cosines for direction 1)

(Cosines for direction 2)

(S)- value included with short

output option. All values included

with long option.

(Cosines for direction 3)

FIG. 2.3--Strain values for output

ment logical property long requests an extended set of strain/stress results at the output

points. The additional quantities include principal values, maximum shear values, state
variables supplied from the material models, etc. The short output option is the default. The

location/number of strain points is specified with the element logical properties: gausspts,

nodpts or center_output. Node point values are extrapolated from the Gauss point values.
The center point values are numerical averages of Gauss point values. The default output

location is gausspts. Figure 2.3 summarizes the element strain output quantities; Fig. 2.4
summarizes the element stress output quantities.

Several examples of output commands are

output wide eformat precision displacements for nodes 1-300 by 2

output stresses elements 900-1500 by 2 300-500

output accelerations for elements 20-40 100-300 by 3

2.11.2 Patran Compatible Result Files

The command to request Patran output files has the form

11n°°a--Ioutp___ _ formatted element < quantity: label >

where

< quantity > is one of the following dis__!lacements, velocities, accelerations, strains,
stresses, reactions

Model DefinitionChapter2 2.11-2

User's Guide m WARP3D Output Requests _T

and nodal results are output by default. Both binary and formatted results are sequential
files created with the Fortran open statement and written with ordinary Fortran write
statements.

The Patran compatible results files are assigned names that begin with four letters fol-

lowed by the 5 digit load step number. Nodal result files begin with the letter wn, element
result files with the letter we. The n and e letters are followed by the letter b for binary files

or the letter f for formatted files. The fourth letter in the file name denotes the physical

quantities: 'd' - displacements, 'v' - velocities, 'a' - accelerations, 'r' - reaction forces, 'e' -

strains and 's' - stresses. Note that element results files are available only for strains and

stresses. For example, the file websO0005 contains element stress results for step 5 in a
binary file.

Figure 2.5 summarizes the data column assignments for Patran strain/stress results

files. The first six strain/stress values that appear at each model node in the Patran nodal
results files are the numerical average for the contribution of each element at the node. The

strain-stress invariants, principal values and directions are computed from these averaged
nodal values. The effective strain, Mises equivalent s_ress, energy density and the three

material model state variables are first extrapolated from the Gauss points to the nodes and
then averaged.

Element result files for strains and stresses adopt the same column assignments listed

in Fig. 2.5 for nodal result files. A single set of values _ven for each element is obtained by
simple averaging of Gauss point values within each element. The first six strain/stress val-

ues that appear for the element are the numerical a'_erage for the contribution of each

Gauss point. The strain-stress invariants, principal values and directions are computed

(S) Ox, Oy, Oz, Oxy, Oyz, Oxz
c

(S) U° = I a de (Work density)

0

(S)

c], c2, c 3 (State variables from material model)

I 1 =ax+oy+az

12 = o 2 + 02yz + o 2 - axOy - Oyaz - axaz

13 = ox(Oyaz -- o2z) -- axy(O=yOz -- OyzOxz) + Oxz(O_yz - Oyaxz)

a I < a 2 -< 03 (Principal stress values)

ll, ml, n 1

12,m2,n 2

13,m3,n3

(Cosines for direction 1)

(Cosines for direction 2)

(Cosines for direction 3)

(S)- value included with short

outout option. All values included

wit: 1 long option.

FIG. 2.4--Stress values fi,r output

Chapter 2 2.11-3 Model Definition

User'sGuide_ WARP3D Output Requests

from these averaged values. The effective strain, Mises equivalent stress, energy density
and the three material model state variables are the average of Gauss point values.

The MacNeal-Schwindler Corporation (developers of Patran) publishes specifications
for the formatted and binary structures of these results files. Appendix A provides skeleton

Fortran programs to read the binary and formatted forms of the nodal results files.

WARP3D generated (ascii) versions of these files are compatible with Patran versions 2.x,
3.x and 5.x.

Please note the following:

• nodal results files contain result values only at model nodes. Strains and stresses are nodes
are obtained using a two step process: (1) extrapolation of integration point values to ele-
ment nodes and then (2) numerical averaging of all nodal values.

• invariants, principal values and direction cosines are computed using the averaged nodal
results for the strain and stress components

• the effective strain (e_=), mises effective stress (avrn), work density (U 0) and material model
state variables (cl, c2",c 3) are the extrapolated and then averaged nodal values

• it is not possible, at present, to specify a list of nodes to appear in the Patran results files.
Results are written for all nodes in the model.

With the release of Patran3 and subsequent versions, "template" files are employed by Pa-

tran to match the data columns in the results files with symbolic names for the physical

quantities. This simplifies user interactions with the results processing features available

in Patran (users no longer need to remember column numbers!). To support post-process-
Lug of WARP results in Patran, we provide a set of such "template" files. These are included

in the WARP distribution and should be copied into the appropriate Patran directory on

your computer (usually the res templates directory of the Patran installation). While exe-

cuting Patran, the user then selects a set of result templates to use before importing the
results files.

2.11.3 Patran Compatible Neutral File for Model

The command to request generation of a Patran neutral file has the form

_ neutral (<name of file: label or string>)

If a name for the neutral file is omitted the default name is "structure_name".neutral (e.g.

beam.neutral). When the specified filename already exists, the current time (hr:min:sec)

is appended to the filename (e.g. beam.neutral_12:00:01).

The following information about the model is included in the neutral file:

• neutral file header records required by Patran

• number of nodes and elements

• coordinates of all model nodes

• incidences for all model elements. The 8 and 20-node elements are defined as HEX/8/#, or
HEX/20/# where the Patran configuration code (#) for the element is assigned the material
number given to the element during WARP3D input. For the 9, 12 and 15 node transition
elements, the elements are defined as HEX/20/# but with zeroes in the incidence lists for
the missing mid-side nodes. The Patran configuration code (#) for the element is assigned
the material number given to the element during WARP3D input.

• constraints (zero and non-zero) imposed on model nodes

At present, no loading information is written to the neutral file.

Chapter 2 2.11-4 Model Definition

User'sGuide_ WARP3D Output Requests _

Data Column Strain Value Data Column Stress Value

1 _= 1 O'x

2 Ey 2 Oy

3 _z 3 az

4 7xy 4 axy

5 Yyz 5 ayz,

6 y= 6 axz

7 eeff 7 U o

8 11 8 arm

9 12 9 c 1

10 13 10 c2

11 e I 11 c3

12 _2 12 11

13 _3 13 12

14 l 1 14 13

15 m 1 15 a 1

16 n I 16 a 2

17 l 2 17 a 3

18 m 2 18 l 1

19 n 2 19 m 1

20 l 3 20 n 1

21 m 3 21 l 2

22 n 3 22 m 2

23 n 2

24 l 3

25 m 3

26 n 3

FIG. 2.5--Column numbers for strain-stre_s results in Patran data files

2.11-5 Model DefinitionChapter 2

User'sGuide-- WARP3D Analysis Restart

2.12 Analysis Restart

Create A Restart File

To maintain the highest possible performance, WARP allocates all data structures in

memory during execution and does not use databases on magnetic disk to temporarily hold

(swap) data arrays. At completion of load step n, the user may request creation of a binary

(sequential) file of data arrays required to restart execution at that point in the solution.
The default form of the save command is

save (.structure.) (< structure id: label >)

where the structure id is optional. If omitted, the last specified structure name is used. The
data file created with this command has the name @_db where @ denotes the first 8 charac-

ters of the structure id.

An explicit name for the restart file may be specified with the command

save (to) file < file name: label or string >

where a <string> must be used ifthe filename startswith/orcontains specialcharacters.

The optionalphrase structuremay alsobe included in thiscommand tomaintain readabil-

ity.

Examples of the save command are

save

save structure cylindrical_bar

save to file bar_step_450

save to file '452_model_bar'

save structure bar to file '325_bar'

Restart file sizes increase with the model size and solution characteristics. For example,

a 7200 node, 5700 element model using a large displacement formulation and the rate-de-

pendent Mises model requires 52 MB of space for each restart file on a Cray.

In a typical analysis, the solution is advanced 10 to 50 load steps then a new restart file
is requested. WARP can be executed later to output results for the load step in a restart file.

The explicit naming feature enables creation of a series of unique restart files at various

points in the analysis.

Access A Restart File

To restart execution of WARP, the first (non--comment) command must be

retrieve (structure) (< structure id: label >)

or using an explicitname forthe restartfile

retrieve (from) file < file name: label orstring >

where a <string> must be used if the file name starts with/or contains special characters.
The optional phrase structure may also be included in this command to maintain readabil-

ity.

Once the restart file is opened and read into memory, WARP displays a message indicat-

ing the load step number n for the restart file and the time completed in the analysis (useful
for dynamic analyses). Commands to request output, to analyze additional load steps, etc.

may then be given as usual.

Chapter 2 2.12-1 Model Definition

User'sGuide_ WARP3D Utifity (*) Commands _

2.13 Utility (•) Commands

Several utility commands are provided to manipulate input-output files, to control com-

mand echo, etc. Each of these commands begins with an * and these commands may be

given at any time during input.

• Echo Command

The • echo command controls the "echoing" of input commands to the cm-rent output de-
vice. By default, all commands are echoed. The * echo command has the form

* Input Command

The * input command controls the location from which input commands are read for pro-

cessing. By default, the input stream is the user's interactive display or the Unix stdin de-

vice. The input stream can be switched to a disk file or switched back to the interactive dis-

play

* in-oP-_(fr°m) I _ 1(file) < file name: label or string >

where the <string> form is required with file names not meeting the definition of a <label>.

• input from file.., commands may be contained within referenced input files to create an

input "stack" up to 10 levels deep. When an end-of-file condition is reached on the current
file, the stack is popped to again read from the previous file. When reading of the last file

completes, the input stream returns to the user's display. In a batch job, the program is ter-
minated by the WARP command processor if an end-of-file condition occurs at the highest
level.

• Output Command

The * output command controls the location (stream) to which usual WARP output is di-

rected. By default, the output stream is the user's interactive display or the Unix stdout
device. The output stream can be switched to a disk file or switched back to the interactive

display

* ot_O_U_to_(to) (fil.__ee)< file name: label or string >

where the <string> form is required with file names not meeting the definition of a <label>.

• Time Command

The • time command outputs the elapsed CPU time ins seconds for the current job.

w

• time

* Reset Command

When the WARP command processor interprets the command stream, errors of various

types may be detected. When errors are encountered, the command processors set an inter-

Chapter 2 2.13-1 Model Definition

User's Guide m WARP3D Utility (*) Commands

hal flag .true. to prevent a compute command from attempting a solution. This internal flag
can be set to the "no error" condition with the * reset command, which has the form

• reset

Chapter 2 2.13-2 Model Definition

Chapter 3

Elements and Material Models

This chapter describesthe elements and material models currentlyavailable.The formula-

tionsand computational procedures unique to the elements]models are outlinedin detail

sufficientfortheirproper use.

3.1 Solid Elements: 13disop, ts9isop, ts12isop, ts15isop, q3disop

These isoparametric elements provide the fundamental modeling capability in Warp3D.
The 8-node element (13disop) employs a conventional tri-linear displacement field. With

the Bmodifications of Hughes [40], the element exhibits minimal volumetric locking under

fully incompressible material response and exhibits slightly improved bending response.
This element performs well under finite deformations encountered, for example, near se-

vere discontinuities and near crack fronts. A simple stabilization scheme may be invoked

should hourglassing modes appear (infrequently experienced in this elements). Unfortu-
nately, the element exhibits shear locking when subjected to very strong bending fields.

The 20-node element provides a quadratic displacement field with the ability to model

crack front singularities in a focused mesh with element shapes collapsed into wedges. With
a reduced order of Gauss quadrature, this element accurately resolves strong bending fields

without shear locking; moreover, the reduced integration order also eliminates volumetric

locking under fully plastic deformation. Thin shell structures are modeled accurately with
just one element through the thickness when combined with the reduced integrationnun-

less the analysis requires precise resolution of through thickness yielding. In such cases

multiple elements defined through the thickness locate Gauss points nearer the outer sur-
faces.

The 9, 12 and 15 node elements have selected "quadratic" edges which enable transi-

tions between the 8 and 20-node elements while maintaining full displacement compatibili-

ty. If Patran is used to create the model, the patwarp program will convert user-defined

8-node elements into transition elements based on shared faces]edges between 8 and
20-node elements in the model.

The element formulations support geometrically nonlinear analysis (large displace-
ments, rotations, finite strains), materially nonlinea,- analysis and combined geometric/

material nonlinear analysis.

For dynamic analyses, the diagonal (lumped) mass matrix derives from the scaled
terms of the consistent mass matrix.

All element computations take place in the global coordinate system for the model.
Strains and stresses output by the model reference t_ e global coordinate axes.

For modeling initially sharp crack fronts, these e: ements are frequently degenerated

or collapsed into a wedge shape. While this modeling technique causes no problems for a
small-strain analysis, difficulties in Newton convergence of the global solution can be expe-

rienced when the collapsed elements have the geometric nonlinear formulation. The reme-
dy is to model the crack front as a very small tube (i.e_ a keyhole) or to model the crack tip

Elements and Material ModelsChapter 3 3.1-1

User's Guide m WARP3D Element 13disop

as an initially blunt notch with a root radius very small compared to the crack length or

remaining ligament length.

3.1.1 Node and Integration Point Ordering

Figure 3.1 shows the ordering of nodes for the elements and the orientation of parametric

axes (_, r],_). The 9, 12, 15 and 20-node elements retain the same numbering for the 8 corner
nodes as defined for the 13disop element. The node ordering for the 20 node element follows

that used in Abaqus for the same element.

These elements have mass, stiffness and internal forces computed using quadrature.

Figure 3.2 tabulates the locations of integration points in parametric coordinates. The
8-node element is always evaluated using a conventional 2 x 2 × 2 Gauss quadrature. The
same 2 × 2 × 2 is defined as the default order for the 9, 12, 15 and 20-node elements. For

these elements, two additional integration rules are provided as options: a 9-point rule and

a 14-point rule. The 9 and 14 point rules are especially useful for the 20-node brick to sup-

press hourglassing modes. Fracture mechanics models constructed with 20-node elements
tend to develop hourglassing modes in those elements located on the crack plane just be-

hind the front. Hourglass modes can also appear in those elements with multiple "free"

faces, especially those subjected to applied loading. The 9 point and 14 point rules offer a

remedy for the modes but at the cost of increased computation time and memory storage.

To eliminate potential errors due to strongly varying element shapes, the mass matrix

and equivalent forces for applied body forces are evaluated with the 14-point rule for the
9, 12, 15 and 20-node elements. Similarly, the equivalent loads for applied face tractions

are evaluated using a 3 x 3 Gauss rule. These procedures are applied independent of the

integration order specified by the user. The user specified integration order is applied for
stiffness and internal force computations and for strain-stress updating.

Element results are frequently output at the "center point" which corresponds to para-

metric location (0,0,0).

Isoparametric elements provide a powerful capability to model the geometry of irregu-
larly shaped bodies. The parent element in parametric coordinates is mapped into the glob-

al Cartesian space using (current) coordinates of the nodes and the linear interpolation
functions. The element behavior remains adequate unless the mapped shape becomes un-
reasonable (either the initial, undeformed shape or the current shape if geometric non-

linear analysis). Corner angles on each face must be >0 ° and < 180 °. The best element re-

sponse is obtained for angles within the range 90 ° + 30 °. Large aspect ratios should be
avoided if possible. The best element behavior derives from a cubical shape; however, rect-

angular prism shapes with aspect ratios of 10-20 are commonly used without undue loss
of accuracy, especially if the strain field varies gently in the "long" direction.

Element routines check for badly distorted elements by examining the determinant of
the coordinate Jacobian at the integration points (using the current nodal coordinates for

geometric nonlinear analysis). Zero or negative values indicate a severely distorted ele-
ment. Messages identifying these problems are printed with information about the ele-

ment.

For edges of elements having mid-side nodes, the nodes must be located intitially within

a narrow range from the geometric center of the element edge.

3.1.2 Element Properties

Table 3.1 summarizes the user-assignable values that control element behavior. Element

properties are defined by the name of the property, a < label >, followed by a value. Logical

Chapter 3 3.1-2 Elements and Material Models

User'sGuide-- WARP3D

Element 13disop

7 6

2

13disop _

8

Isoparametric Coordinates of Nodes

I

+%1+1
12 _ 9

1

ts15isop i

I

20 18
/ 11f

4

q3disop I

FIG. 3.1-- rdering for the isoparam+:tric solid elements. Isoparametric]
coordinates for the element corner nodes are listed.

l

Chapter 3
3.1-3

Elements and Material Models

User'sGuiden WARP3D Element 13disop

Isoparametric Coordinates Nodesof

J I _ 6 Node _ r/ _ Node _ r/
i .,) 1 -I -I I 5 I -I

8f._ i _ 2 -i -I -I 6 i -_
I _ ! _ 3 -I I -I 7 I I

I _5_/'_ 4 -I I I 8 I I

3 2

4

_ 4_

1

ts9isop

1
-1
-1

1

2

FIG. 3.1--Local node ordering for the isoparametric solid elements. Isoparametric
coordinates for the element corner nodes are listed.

properties are set .true. simply by the appearance of the property name. The default behav-

ior for the 13disop element is this: small-strain formulation, 2 × 2 × 2 Gauss integration,
Bformulation, and output of a short list of strains-stresses at the Gauss points. For the

ts9isop, ts12isop, ts15isop and q3disop elements, the default behavior is this: small-strain
formulation, 2 x 2 × 2 Gauss integration, and output of a short list of strains-stresses at the

Gauss points.

Chapter 3 3.1-4 Elements and Material Models

User'sGuidem WARP3D Element 13disop _

8 7 6

2
4

1

2 x 2 x 2and 9pt_rule

Coordinates of Gauss Pts.

Point _ r/

1 -a -a -a
2 -a a -a
3 a -a -a
4 a a -a
5 -a -a a
6 -a a a
7 a -a a
8 a a a

9 0 0 0

a=0.57735

14pt_rule

Coordinates of Pts.

Point _ r/

1 -a 0 0
2 a 0 0

0 -a 0
4 0 a 0
5 0 0 -a
6 0 0 a
7 -b -b b
8 -b -b -b

9 -b b -b

1£ -b b b
11 b -b b

1_ b -b -b

1_ b b -b

14 b b b

a=0.795822 b=0.758787

FIG. 3.2--Location of integration points it, isoparametric coordinates.

3.1-5 Elements and Material ModelsChapter 3

User'sGuide.-_ WARP3D Element 13disop

Element Property

Geometrically linear formulation

Geometrically nonlinear formulation

Keyword

linear

nonlinear

Mode

Logical

Logical

Default
Value

True

False

noneMaterial associated with element material Label

Order of Gauss integration order String 2 x 2 x 2 t

Use _ formulation bbar Logical True*

Do not use _ formulation no_bbar Logical

LogicalgaussptsOutput strains-stresses at Gauss points

Output strains-stresses at element nodes nodpts Logical

Output strains-stresses at (0,0,0) in element center_output Logical False

Output minimal set of strain-stress values short Logical True

Output full set of strain-stress values long Logical False

False*

True

False

*9pt_rule and 14pt_rule available for 9, 12, 15, 20-node elements

*_ is not available for 9, 12, 15 and 20-node elements

Table 3.1 Properties for 13disop, ts9isop, ts12isop, ts15isop and q3disop elements

3.1.3 Output Options

Printed strain-stress results may be obtained at the integration points (default), the ele-
ment nodes or at the parametric centerpoint of the element (0,0,0). Figures 2.3 and 2.4 de-

fine each of the strain-stress values output by the element.

When the 2 × 2 x 2 integration rule is specified, nodal values of c_ij, eii are computed by
extrapolation of Gauss point values using linear, Lagrangian polynomials. When other in-

tegration orders are specified, the nodal values are defined simply as the mean values of

the integration point values since no clear extrapolation procedure exists (values at all
nodes of an element are identical). Values of invariants, principal values and directions are

computed from these extrapolated nodal values. Values of effective strain, Mises stress, en-

ergy density and state variables dependent on the material model are simply extrapolated
to element nodes.

The centerpoint values of aij, EVare the simple numerical average of Gauss point val-
ues. Values of invariants, principm values and directions are computed from these aver-

aged, centerpoint values. Values of effective strain, Mises stress, energy density and state
variables dependent on the material model are simply are simply averaged.

Chapter 3 3.1-6 Elements and Material Models

User'sGuide_ WARP3D Element 13disop _

The short option requests printing of a reduced set of output values. The invariants,

principal values and direction cosines are omitted. This is the default output option.

3.1.4 Mass Formulation

The element (diagonal) mass matrix is evaluated once at the start of computations for the

first load step. Entries of the lumped mass are proportional to the diagonal entries of the
element consistent mass. The proportionality factor is defined to preserve the total mass

of the element, e.g., the sum of the diagonal terms for the vi accelerations equals the ele-
ment mass. This procedure always generates positive values for the lumped mass and leads
to optimal convergence rates with mesh refinement.

The element mass matrix for analysis is thus given by

m_ = J Y, (3.1)

0 a;_b

where p denotes the mass density of the undeformed material. Na denotes the usual linear

interpolating functions for the element node a. The scaling factor a is given by

total element mass sum of diagonal entries
of consistent mass

where nn denotes the number of element nodes. As noted previously, a full integration order

is emplyed to evaluate these integrals.

3.1.5 Element Loads

Loads available for these elements include body forces, face tractions, face pressures and

uniform temperature changes. Imposed nodal temperatures can generate a non-uniform

temperature field over the element. Nodal and element temperature loads may be active
simultaneously and can be mixed with other types of element loadings. A sequence of ele-
ment load definitions has the form

element (loads)

< elements: list >

< elements: list >

< type of element loading >

< type of element loading >

where the <type of element loading> is a body force, _. face traction or a temperature.

Body Forces

Body forces are specified by the intensity (units of F/Z 3) and the direction along one of the

coordinate axes. The body force intensity is constant over the element. The body force loads

are defined by the command

Face Tractions

Tractions applied to the faces of elements may have a direction along one of the global coor-

dinate axes or a direction normal to the specified face. Figure 3.3 defines the face numbers.

Chapter 3 3.1-7 Elements and Material Models

User'sGuide-- WARP3D Element 13disop

(forc___ees) by (=) < force intensity: number > (
bz

The commands define the loaded face of the element, the loading intensity (units ofF/L2),

and the loading direction. When the traction is aligned with one of the coordinate axes, the
command has the form

face < face number: integer> (tractions)
(=) < intensity: number > (t

For a normal (pressure) loading, use a command of the form

face < face number: integer> pressure (=) < intensity: number >

where a positive value for the intensity denotes a load directed into the face, i.e., a positive

pressure loads the face in compression.

Uniform Temperature

A uniform temperature change over the complete element may be imposed through ele-
ment loads.The command has the form

Element loads are additive; if the same element and direction appear in two different load-

ing commands the sum of two loads is applied to the model. An example sequence to define

a loading condition and a set of element loads is

loading one

element loads

1-40 620-800 by 2 face 6 pressure -2.1 temperature 32.4

140 face 3 tractions tx -0.5 ty 14.34 tz 42.6

3256-4000 body forces bz 12.3 bx -32.4

20 body force bx -3

In the above example, element 20 has both a normal face pressure on face 6 and body forces

in the x andy directions. Specifications for different loading types for a list of elements may

be combined onto a single line if desired.

Large Displacement Effects on Loads

When the analysis includes geometric nonlinear effects (large displacements), equivalent
loads for the incrementally applied surface tractions are re-computed at the beginning of

each load step using the current (deformed) geometry of the elements.

3.1.6 Strains-Stresses for Geometric Nonlinear Formulation

The nonlinear property requests a geometrically nonlinear element formulation. Stress

values output by the element are then the Cauchy (true) stresses. The Cauchy stress de-
fines tractions over internal surfaces in the deformed configuration. The Cauchy stress

components, (;ij, are aligned with the global coordinate axes for the model. The symmetric
Cauchy stress satisfies the equilibrium conditions

Chapter 3 3.1-8 Elements and Material Models

User'sGuiden WARP3D Element 13disop _

8

I

4

7

3

Isoparametric Coordinates of Nodes

6 Node _ r/

1 -1 -1 1
2 -1 -1 -1
3 -1 1 -1
4 -1 1 1
5 1 -1 1
6 1 -1 -1
7 1 1 -1
8 1 1 1

Face No. Nodes

1 1-2-3-4
2 5-8-7-6
3 1-5-6-2
4 4-8-7-3
5 2-6-7-3
6 1-5-8-4

FIG. 3.3reFace numbers for applying tractions _o the isoparametric elements.

_ature (=) < value: number > (,)

I,"°" -- °
where n defines a unit outward normal to the deformed surface S, and V denotes the de-
formed volume of the body.

The increment of strain that advances the solutioi: from load step n to n+l is given by

hE = B(x n + 1/2)Au (3.4)

where the B form the linear-strain displacement matrix is evaluated at the mid-step de-

formed configuration. This corresponds to a finite increment of the rate of deformation ten-

Chapter 3 3.1-9 Elements and MateriaI Models

User'sGuide_ WARP3D Element 13disop

sor, D n + 1/2 " At, over the step. Converged increments of Ae are summed over k load steps
to defme a measure of strain for output as

n=k

= _, Ae (3.5)
n=l

where the shear strains follow the usual engineering definition, i.e., Ayxy = 2 x Aexy.

The increment of strain Ae is identified as the rate of logarithmic strain with respect

to the current (deformed) configuration.

m

3.1.7 The B Formulation

Many methods to alleviate locking which occurs in fully integrated elements have been pro-

posed in the literature. The so-called Bmethod (Hughes [40]) implemented for the 13disop
element in WARP3D is outlined below.

The strains are divided into deviatoric and dilatational parts in the following manner.

3

ij = edevij -4- e dilij ediltj = 1(..3tj E e'kk e'de" vtj = eij -- edilij (3.6)
k=l

The strain-displacement matrix, B, is divided divided into a dilatational and deviatoric

parts in the same manner as

where

B = [B 1B 2 ... Bn]

"B I 0 O"

0 B2 0

0 0 B 3

Bi = B 2 B 1 0

0 B 3 B 2

B 3 0 B 1

(3.7)

Bid iz =½

"B1 B 2 B 3"

B1 B2 B3

B1 B2 B 3

0 0 0
000
000

B.dev = B i - Bd. il (3.8)
t t

with the subscript i is omitted for clarity on each term inside the [] and

ON i ON i ON i
Bil- Ox Bi2- Oy Bi3 =--_-- (3.9)

The dilatational contribution to the stiffness causes locking for near incompressible condi-

tions and is replaced the dilatational part of the strain-displacement matrix with a modi-
fied dilatational part, _dil. The strain-displacement matrix is replaced by B defined as:

B1 B2 B3

Hi = B dev + ._diZ where Hdil = 1 B 1 B 2 B 3 (3.10)
' 0 0 0

0 0 0
0 0 0

where again the subscript i on each term in the [] has been omitted. The B matrix can then
be written out explicitly in the following form (with subscript i omitted inside [])

Chapter 3 3.1-10 Elements and Material Models

User'sGuide_ WARP3D Element 13disop _

"2B:+ E I

BI - BI

B1 - B1

3B 2

0

3B 3

B2 - B2 B3 - B3"

2B2 + B"2 B3-B3

+
3B_ 0

3B 3 3B2

0 3B]

(3.11)

Mean Dilatation

Several options for defining B-_iiz have been proposed in the literature. Here we use the

"mean dilatation" approach suggested by Nagtegaal, e_ al. [63]. A volume averaged (mean)

/}i matrix is computed over the element as

1 I BidVeSi "='_e
(3.12)

y_

• _dil
with Bi at each Gauss point taken as the dilatationalcomponent of B ias in Eq. (3.10).

To save computations, only the three terms needed from _}ito compute _/iz are actually
evaluated

0Hi 1 f 0Y,
- -, eJ- -dVe

v,

oHi 1 f
- -, eJ- -dVe

y_

(3.13)

(3.14)

(3.15)Bi3- ONi - 1 f ONidv
-ffZ Ye J OZ e

v,

using the standard 2 x 2 x 2 Gauss quadrature.

This formulation provides an element with the same dilatationalstrain and mean

stressat each ofthe 2 x 2 x 2 Gauss points.When plane strainconstraintsare imposed on

the B element, the ezisnot restrictedto 0 at each Gaass point,but isonly restrictedto 0

over the element as a whole, i.e.,forcenter_outputthe ezvalue iszero.

Large Displacement Form

When large displacement effects are present, the current coordinates of the element nodes
are adopted to form B to compute virtual strains for internal force computation as in

IFe = Iv.ST(Xn+ l)On+ l dYe (3.16)
, c

where a denotes the Cauchy stresses and Ve the curren _(deformed) element volume at n+ 1.

Hourglass Stabilization

The B modification which enforces constant pressure throughout the element can

introduce spurious hourglass modes. A classic example which illustrates this element be-
havior involves finite compression of a plane-strain block, where the ends are restrained

Elements and Material ModelsChapter 3 3.1-11

User's Guide -- WARP3D Element 13disop

m

from lateral expansion. The differences between deformed shapes with and without the B

modification are quite surprising.

A simple stabilization procedured suggested by Nakamura et al. [67] often helps to sup.:

press this behavior. A specified fraction of the usual B dil replaces a similar fraction of B_"
as

When _ = 0.0, the full B form of the element is obtained; when e = 1.0 the conventional B

matrix for the 8-node element results. No extra computational costs incurr for e > 0.

Users specify the value of e in the nonlinear solution parameters for the analysis with
the command (see Section 2.9.11) bbar stabilization factor <numr>. The default value ofe

is 0.0.

3.1.8 Example

The following example illustrates the specification of elements in a model.

structure cot

C

material a533b

properties

c

number of nodes 25642 22092

c

elements

14000-22092 type 13disop nonlinear material a533b order 2x2x2,

long bbar center_output

type q3disop linear material a533b order 2x2x2,

long nodpts

2000-4000

Chapter 3 3.1-12 Elements and Material Models

User'sGuide--WARP3D Material deformation --

3.2 Material Model Type: deformation

The flow or incremental theory of plasticity with a Mises yield surface has been extensively

employed in elastic-plastic analyses. Alternatively, plasticity can be described by a defor-

mation theory which assumes that the strain path at each material point remains linear

(proportional) over the full range of loading. Deformation plasticity is essentially a non-

linear elasticity theory. For a proportional strain path, deformation and incremental plas-
ticity theories provide identical results. Deformation plasticity does not correctly model the

path-dependent behavior of materials for radical departures from proportional loading.

Deformation plasticity offers significant savings of computational effort compared to
flow theory plasticity. Much larger load steps may be imposed on the model and only a few

Newton iterations are needed for convergence at each load step. The number of computa-

tions performed in the material model is greatly reduced compared to a general incremental

theory model since there is no explicit yield surface to complicate matters. Solutions tend

to be very stable compared to those for flow theory especially when a region of the model
contains large strain gradients, e.g., at a crack.

This model employs a representation of the uniaxial (tensile) stress-strain curve con-
sisting of three parts: an initial, linear response followed by a small circular transition to

a pure, power-law model.

The model supports only a small-strain formulation and rate-independent reponse.
The assumptions of purely proportional loading in the naodel are questionable at best when

finite strains and large rotations of material element,_ occur.

3.2.1 Formulation and Computational Procedures

The uniaxial stress-strain curve for the material is represented by the following relations

(refer to Fig. 3.4):

• _ G for _-<K1 (3.18)
• 0 GO GO

where,

e__= G for K1 < G < K2 (3.19)
• 0 ENc -- -- -- GNc -- G--O --

(o)n• G
_0 = _00 for _00 > K2 (3.20)

•0 reference stress (yield stress)

G o reference stress (yield stress)

n hardening exponent for power-law region

K1,K2 lower, upper stress limits for transition

•Nc, GNc center of circular transition arc

rNc radius of transition arc

Chapter 3 3.2-1 Elements and Material Models

User'sGuidem WARP3D Material deformation

1.5

0.5

0

f Transition

K1 / _1 rNc

. (eNc, aNc)

_ Linear

i | D

0 0.5 1 1.5

Power-Law

| !

2 2.5 3

FIG. 3.4--Uniaxial (tensile) stress-strain curve for the "deformation" plasticity
material model.

Given the linear limit, Kb the model is able to compute the upper limit for the transi-
tion, K_ based on the hardening exponent as well as the center of the small transitional

arc and the corresponding radius. K1 has the value 0.95.

Using an effective stress defined from the von Mises yield function and an effective
strain defined from the Prandlt-Reuss relations, the total stress components in terms of

the total strain components are given by:

aij _ 1 ekk S. 20e/aoeij (3.21)
a0 3(1--2v) e0 'J + 3ee/e oe0

where the effective stress and strain are defined by:

oI=_[(o,,-o2_2+(o22-o33__+(o3_-o,,)_+6(o_+o_+o_3)] (3.22)

3 2 2 721)] (3.23)e2 = 2[(Ell - E22) 2 Jr (E22 - _33)2 -'1"- (E33 - Ell)2 ÷ "2(712 -'1- 723 "t"

Full details of the formulation may be found in the Appendix of the thesis by Wang [89].

Chapter 3 3.2-2 Elements and Material Models

User'sGuide--WARP3D Material deformation

3.2.2 Model Properties

The properties defined for material model deformation are listed in Table 3.2. Temperature

loadings are not supported by this material model.

Default

Model Property Keyword Mode Value

Young's modulus e Number 0.0

Poisson's ratio nu Real 0.0

Mass density rho Real 0.0

Reference yield stress (oo) yldpt Number 0.0

Power law exponent (n) npower Number 0.0

Table 3.2 Properties for deformation Material Model

3.2.3 Model Output

By default, the material model prints no messages duri ng computations unless the numeri-
cal algorithms fail to converge. If requested, the material model prints the element number

and strain point number whenever the effective stress first exceeds the specified yield

stress. This option is requested with the nonlinear solution parameter material messages
on (refer to Section 2.9.8)

The model makes available the exactly integrated strain energy density, U0, to the ele-

ment routines for subsequent output.

3.2.4 Computational Efficiency

The computational routines for this model process elements in blocks of a size matched to
the vector length of the computer (i.e., Crays) or to the cache size of the workstation. All

model computations are written in vectorized code except for the local Newton loop to up-
date the scalar stress oe using the uniaxial stress-strain curve in Fig. 3.4. Compared to the

general rate-dependent Mises model discussed later, tt is model is much faster. It is, howev-
er, slower than the fully vectorized Mises model with ,'onstant hardening described in the

following section.

3.2.5 Example

The following example defines the properties for an A533B material frequently used in frac-

ture models and assigns the material to some elements.

structure cct

c

material a533b

properties deformation

rho 7.3e-07

e 30000 nu 0.3 n_power i0 yld_pt 60.0,

3.2-3 Elements and Material ModelsChapter 3

User's Guide -- WARP3D Material deformation

C

number of nodes 25642 22092

C

elements

14000-22092 type q3disop linear material a533b order 9pt_rule,

long

C

Chapter 3 3.2-4 Elements and Material Models

User's Guide m WARP3D Material bilinear _

3.3 Material Model Type: bilinear (mises)

This material model extends the small-strain Mises plasticity theory to include the effects

of finite strains and rotations. Rate-independent, incremental theory of plasticity with

(constant) isotropic and kinematic hardening is employed with the yon Mises yield surface
expressed in terms of the Cauchy (true) stress. This model is formulated for the analysis

of ductile metals which undergo large plastic strains but small elastic strains. By this we

mean that the unloaded configurationobtained aftersignificantplasticdeformation isne-

gligiblydifferentfrom the deformed configuration.This assumption simplifiesconsiderably

the treatment ofmaterial elasticityand permits additivedecomposition intoelastic,plastic

and thermal components ofstrainincrements definedwith respecttothe deformed configu-
ration.

The constitutiveframework forWARP3D outlined in Chapter I neutralizesfiniterota-

tion effectsduring stress-update and computation of the consistent tangent moduli. The

small-strain,stress-updating procedures follow a single-step,elastic-predictorradial-re-

turn algorithm. The algorithm isunconditionally stablefor large strainincrements and

provides superb accuracy in the updated stresses(fora singlestep method). Inelasticun-

loading-reloadingevents are processedwithout difficulty.The lastsectionprovides an over-

view ofthe radial-returnprocedures implemented forthismodel.

This model employs a representation ofthe uniaxial (tensile)stress-straincurve con-

sistingof an initial,linearresponse followedby linearhardening. Purely isotropic,purely

kinematic and mixed isotropic-kinematichardening are offeredas options.

The model offerstwo types ofpropertiesfor response totemperature changes imposed

in the analysis:isotropicand anisotropic.Isotropicrefersto the conventional description

which uses the same thermal expansion coefficient(aipha)foreach normal straincompo-

nent with zerothermal strainsgenerated forthe shear components. The anisotropicmodel

enables definitionofa unique thermal expansion coefficientforeach ofthe 6 straincompo-

nents;itisintended to support modeling ofvarious initialstrain-stressfields,forexample,

residual stressesimposed through an eigenstrainapproach. The isotropicmodel forther-

mal loading can be used insmall displacement, largedisplacement and finitestrainanaly-

ses.The anisotropicmodel forthermal loading should not be used in largedisplacement-fi-

nitestrainanalyses.

The bilinearmodel provides a very computationally efficientalternativetothe general

Mises model describedin the next sectionwhen the rate-independent, constant hardening

assumptions apply in the analysis.Allcomputational steps ofstress-updatingand consis-

tent tangent generation are vectorized.This model has the best computational perfor-

mance°

The followingsectionsdescribe needed parameter,;toutilizethismaterial model. Full

detailsofthe numerical implementation are provided in the finalsection.

3.3.1 Stress-Strain Curve and Hardening Options

The uniaxial stress-strain curve for the material is represented by the linear hardening

model shown in Fig. 3.5.

For a small-strain analysis (linear kinematic formulation), specify engineering values

for the strain(e E) and stress (OE). For a finite-strain analysis (nonlinear kinematic formula-
tion), specify the uniaxial stress-strain curve using th _. logarithmic strain, e, and the true

(Cauchy) stress, oz. For a finite-strain analysis, the usher should convert conventional engi-

neering strain, eE, and engineering (nominal) stress, o _, values for input using the relations:

Elements and Material ModelsChapter 3 3.3-1

User's Guide -_-WARP3D Material bilinear

a = aE(1 + eE) (3.24)

• = ln(1 + •E) (3.25)

The above conversions assume incompressible, homogeneous deformation. The true stress-
true strain curve discussed here assumes homogeneous, uniaxial deformation of the mate-

rial, i.e., prior to necking. Once necking occurs, the above expressions are no longer applica-
ble. More elaborate corrections, for example those developed by Bridgeman, are required.

co

L_

q_

/ -

o Log Strain

FIG. 3.5--Uniaxial (tensile) stress-strain curve forthe "bilinear"plasticity material

model. For finite-strain analysis, input the Cauchy stress and log strain description.

Once yielding begins, three strain hardening options are available. The strain harden-

ing option is selected with the/_ (beta) model property. The rate of strain hardening is con-

trolled by the user-specified tangent modulus, E T, and the value of/3. The strain hardening

options are:

1. Isotropic hardening (t _ = 1.0). The radius of the yield surface increases in proportion

to the plastic modulus, H' = EET/(E - ET). This is the default hardening option.

2. Kinematic hardening (/_ = 0). The radius of the yield surface remains constant at the

initial yield value. The yield surface translates in the direction normal to the surface at the

current stress contact point. The rate of translation is governed by the plastic modulus,

H' = EET/(E - Er), of the uniaxial stress-strain curve.

3. Mixed hardening (0 < fl < 1.0). Part of the strain hardening is isotropic and part is

kinematic. The value of/_ controls the proportion assigned to each hardening model, e.g.,

/3 = 0.25 requests that 25% of the hardening be processed as kinematic and 75% as isotrop-
ic.

Chapter 3 3.3-2 Elements and Material Models

User'sGuide_ WARP3D Material bilinear

3.3.2 Model Properties

The properties defined for material model bilinear are listed in Table 3.3. When the value

of alpha is specified, that value will be used for alphcL_, alphay and alphaz.

3.3.3 Model Output

By default, the material model prints no messages during computations. If requested, the
material model prints the element number and strain point number whenever the effective

stress first exceeds the specified yield stress. This option is requested with the nonlinear

solution parameter material messages on (refer to Section 2.9.8)

The model makes available the strain energy density, Uo, to the element routines for

subsequent output. U0 at step n+l is evaluated using the trapezoidal rule

U_0+1 = U_0 + ½(tn+l + tn): Ad (3.26)

where the unrotated Cauchy stresses and unrotated strain increments are adopted for the

finite-strain formulation. Thermal contributions to Ad are subtracted prior to the above
computation.

The element stress output contains up to three values for the material model "state"
variables. These values for the mises material are:

mat vall: accumulated plastic strain, ff = _ _ 2At

rnat_val2: equivalent stress, g = _(3/2)_#'_ij'

mat val3: not used

i Default
Model Property Keyword Mode Value

Young's modulus e i Number 0.0

Poisson's ratio nu Real 0.0

Mass density Real 0.0

Yield stress

Hardening modulus (JET)

Hardening mixity (fl)

Thermal expansion coefficient
for isotropic response

Thermal expansion coefficients
for amsotropic response

rho

yld_.pt

tan_e

beta

alpha

alphax, alphay,
alphaz, alphaxy,
alphaxz, alphayz

J

iNumber
i

Number

Number

Number

Number

0.0

0.0

1.0

0.0

0.0

Table 3.3 Properties for bilinear Material Model

Elements and Material ModelsChapter 3 3.3-3

User's Guide -- WARP3D Material bilinear

3.3.4 Computational Efficiency

The computational routines for this model process elements in blocks of a size matched to

the vector length of the computer (i.e., Crays) or to the cache size of the workstation. All
model computations are written in vectorized code. Compared to the general rate-depen-

dent Mises model discussed later, this model is significantly faster.

3.3.5 Example

The following example defines the properties for a mild steel material frequently used in

fracture models and assigns the material to some elements.

structure cct

c

material a516

properties bilinear e 30000 nu

rho 7.3e-07 alphax 1.2e-06

c

number of nodes 25642 22092

c

elements

14000-22092 type 13disop linear material

long bbar

c

0.3 y!d_pt 60.0 tan_e 300.0,

alphay 3.2e-06 alphaz 5.3e-05

a516 order 2x2x2,

3.3.6 Plasticity Algorithms

During a time step from state n to state n+l, global equilibrium iterations, designated by

i, are performed at a constant external load level to reduce the residual sufficiently close
to zero. Each iteration allows a new estimate of the strain rate to be determined at the state

n+l which is associated with the iteration. With this estimate, the stress at the ith update

of state n+l is computed. This process is termed the stress recovery and is the principal fo-
cus of a material model. For stress updating, the ith estimate of the strain increment over

the step is used, AE i _---- _n + 1 Cn, which defines the so-called 'path independent' strategy.
The current implementation of this model does not use subincrementation schemes which
subdivide the strain increment.

Also necessary at each global iteration is a constitutive tangent operator that relates
stress rate to strain rate, or changes in stress to changes in strain, so that increments of

displacement from n+l at i-1 to n+l at i may be computed and strain rates estimated. This

task is also the responsibility of the material model.

The small-strain plasticity model is based on rate independent, isotropic J2 flow theory

considering both isotropic and kinematic hardening and utilizing a bilinear u_n/axial mate-

rial response. The stress recovery during plastic flow is performed using an elastic predic-
tor-radial return numerical integration scheme (see Key [49], Kreig and Key [54], Dodds

[22], Keppel and Dodds [48] for additional details). A consistent rather than a continuum
tangent operator is computed for use in the calculation of the element tangent stiffness ma-

trix in order to maintain quadratic convergence in the global nonlinear solution (see Simo
and Taylor [82]). The complete algorithm for the stress recovery and the evaluation of the

consistent tangent operator at a given material point is developed and outlined in the fol-

lowing discussion.

Stress Recovery

Let t.., d.., and a i. be the stress, strain rate (minus thermal strain rate), and back stresstj tj _
respectively. Deviator values and norms assomated with these tensors are defined by

Chapter 3 3.3-4 Elements and Material Models

User'sGufdeD WARP3D Material bilinear --

t 2

hydrostatic axis

t' 1

plane

t' 3

surface

t 3

FIG. 3.6--Mises yield surface in principal stress space

()i> = ()_ 3 v,_, II ()ij II= _)i/)0 (3.27)

Because the vector corresponding to aij in principal stress space lies in the z plane of the
yield surface, a n is zero and the deviator of the back stress is the back stress. Accordingly,
the deviator relative stress is given as

'ij = t -- aij (3.28)

allowing the Mises yield surface (Fig. 3.6) to be described by the equation

_ij_ij k 2 = 0 (3.29)
2

where k is proportional to the radius of the yield surf _ce in the _r plane.

The strain rate is decomposed into elastic and plastic components by the equation

dij = d_ + d_ (3.30)

The unit normal tensor is defined as

_q (3.31)

n ij = i] _ ij II

Chapter 3 3.3-5 Elements and Material Models

User'sGuide-- WARP3D Material bilinear

so that plastic strain rate can be described by the equation

dp. = _nij (3.32)_j

Increments of the plastic strain will thus be normal to the yield surface in stress space.
As a consequence of J2 flow theory, d p. the change in plastic volume with time, is zero; the

/_,

deviator plastic strain rate is therefore equal to the plastic strain rate.

The effective plastic strain rate and the effective stress are defined as

$p = _-dPd p (3.33)
_/3ijij

and

1 ' ' (3.34)q = 3_2 ; J2 = -_tijtij

The derivative of the effective stress with respect to the effective strain is the plastic

modulus H'. For a Mises yield surface with a bilinear uniaxial stress-strain diagram, H'

is given as

H' - EET (3.35)
E - E T

where E and E T are Young's modulus and the tangent modulus, respectively. Note that for

a bilinear material, E r and H' are constants.

Along with Eq. (3.32), the evolution equations for the material are given by

ai j = 2(1 -- fl)H'dP. = 2(1 - fl)H'2nij (3.36)
tj

= -_flH' II dP_ II= -_flH',_ (3.37)

t'ij = 2G(dlj - d:_.)) (3.38)
tj

P i_
- 3 - Kdkk (3.39)

The parameter fl controls the type of hardening used in the analysis. It measures the
proportion of the hardening which is isotropic, ranging in value between zero and one. Val-

ues offl = 0.0, 1.0, and 0.25 indicate pure kinematic hardening, pure isotropic hardening,

and 25% isotropic hardening - 75% kinematic hardening. The parameters K and G are the
bulk and shear moduli of the material.

The material point is assumed to be strained at a constant rate during the time step.
Rate tensors are evaluated at state n+l/2 when integrated to produce an increment over

the step. Consequently, the hydrostatic stressp of Eq. (3.39) and the elastic predictor trial

deviator stress at state n+l are computed as

n+ lp = np + gAt n+ l/2d'kk (3.40)

n+ lt:t = n tij + 2GAt n+ l/2dlj (3.41)_j

The trial deviator relative stress is defined in terms of the trial deviator stress and the

back stress at state n:

Chapter 3 3.3-6 Elements and Material Models

User'sGuide_ WARP3D Material bilinear

n+l_'.t_tj= n+l t'.t.tj-- naij (3.42)

At this stage, if the material point is elastic, the stress recovery is essentially complete.
It remains only to re-combine the hydrostatic stress and the trial deviator stress. If the

material point is in the state of plastic flow, using Eq. (3.38) the trial deviator stress is modi-

fied by a stress increment corresponding to a radial return to the yield surface in order to

calculate the updated deviator stress at state n+l:

n+ lt_ j = n+l t:t. _ 2GAt n+ l/2d'(P) = n+l t:t. _ 2G;tAtni j (3.43)
tj ij t.1

For simplicity of notation, in Eq. (3.43) and later ;t is taken as evaluated at state n+l/2

and nij at state n+l. The updated back stress at state n+l follows from Eq. (3.36):

n + l(E ij -_ naij + _2(1 - t_)H';tAtnij (3.44)

as

Combining Eqs. (3.43) and (3.44), the deviator relative stress at state n+l is expressed

n+l_ij' _" n+l _"t - ;tAt[2G + 2(1- fl)H']nij-t_

Specifying the unit normal tensor at state n+l to be

n+l 't

ntJ- Hn+l_ It

and substituting into Eq. (3.45) leads to the relationship

Recasting Eq. (3.29) as

I1n÷l II- f _n*lk = 0

and noting from Eq. (3.37) that

1k = n k + (---_flH';tAt
n ÷

allows Eq. (3.47) to be manipulated, yielding

II"+' II- Z nk
;tAt =

(3.45)

(3.46)

(3.47)

(3.48)

(3.49)

(3.50)

}tAt is backsubstituted into the preceding equaticns to resolve all stresses and state

variables. It is possible to directly compute ;tAt because H' is a constant signifying that the
effective stress is a linear function of the effective plastic strain. If this functionis not linear,

then it would be necessary to iterate to determine ;tAt.

A flow chart illustrating the steps required for the recovery of stresses is displayed in

Fig. 3.7. The algorithm above is implemented in a vector form. The six components of stress
tensors are arrayed in the order { 11 22 33 12 23 13 }. Strain tensors correspond to vectors

with identical ordering but with diagonal terms doubled to form engineering strains.

m

Elements and Material ModelsChapter 3 3.3-7

User's Guide m WARP3D Material bilinear

Enter with strain increment A_

Compute deviator strain increment Ae'

Compute trial deviator relative stress n + l(_,t)

Evaluate yield function [[n + 1 (_,t)][_ _ n k

S

Update deviator stress n+ l(t,)

Update hydrostatic stress n + lp

Update stress n+ l(t)

Compute ;tAt

Update n + Ik

Update back stress n+ l(a)

n + l(t,)Update deviator stress

Update hydrostatic stress n + lp

n+l(t)Update stress

FIG. 3.7--Stress recovery procedure for bilinear (Mises) material model

Consistent Tangent Operator
.

The tangent operator required for the calculation of element tangent stiffness matrices sat-
isfies the following relationship between stress rate and the total strain rate:

tij "= Cijkl dk_ (3.51)

For a material point in the elastic state, the isotropic tangent operator is given by

Chapter 3 3.3-8 Elements and Material Models

User'sGuideD WARP3D Material bilinear

(3.52)

Once the material point experiences plastic flow, the tangent operator is given by

cEPijkl = K6ij6kz + 2G[½(6ik6jt + 6_z6jk)- _6ij6kl]- 2C-Tnijnkz (3.53)

1 (3.54)

The operator of Eq. (3.53) is termed the continuum tangent operator. Its use is compat-

ible with an exact integration of the evolution equations, which are continuum in nature.

However, the elastic predictor-radial return procedure for stress updating does not repre-
sent an exact integration; it is in essence a secant approach. Not surprisingly, use of the

continuum tangent operator leads to a degradation in the quadratic convergence character-

istic of the global Newton iterations. Simo and Taylor [82] established a tangent operator

compatible with the elastic predictor-radial return algorithm which preserves the quadrat-
ic convergence. It is often termed the consistent tangent operator, and it is the tangent oper-

ator employed in WARP. The consistent tangent operator is given by the following equa-
tions:

CijE_l = KSij_kl + 2GB[½(&ikSjl + &,16jk)- 15ij_l] -- 2C_nijnkl (3.55)

[vf2 n+lk -}- 2(1 -_)g'_At] 1

t [.]IIn÷l ij II 1

In the code, the above tangent operator is appliec[in a 6 x 6 matrix form that relates

a stress vector to an engineering strain vector.

w

Elements and Material ModelsChapter 3 3.3-9

User's Guide _ WARP3D Material mises

3.4 Material Model Type: mises

This material model extends the capabilities offered by the bilinear (raises) model to include

more general descriptions of the uniaxial stress-strain response and viscoplastic effects.

The response to temperature changes imposed in the analysis follows that described pre-

viously for the bilinear model.

The mises model provides three options for the inviscid uniaxial (tensile) stress-strain
curve: (1) constant linear hardening after yield, (2) pure power-law hardening after an ini-

tially linear response prior to yield, and (3) general piecewise-linear description. This gen-

eralized form of raises plasticity supports only isotropic hardening.

To introduce a rate dependence into the model, we adopt a power-law viscoplastic rela-

tionship suitable for ductile metals undergoing large amounts of plastic straining. The vis-

coplastic strain rate is given by

_vp = D - 1 (3.57)

where D and m are user-specified material constants, q denotes the rate-dependent (uni-
axial) tensile stress and oe the inviscid (uniaxial) tensile stress. The viscosity term is often

written in the form D = 1/_. For a moderately rate-sensitive material, such as an A533B

pressure vessel steel at 100 ° C, typical values of D and m are 1.0 (in./in./sec) and 35, respec-

tively. In the simplest case, ae is specified to remain constant at the yield stress, a 0 (the lin-

ear hardening model with ET= 0). More generally, ae is a linear or power-law function of
_vp.

The following sections describe needed parameters to utilize the raises material model.

Additional details for rate-dependent features of the model are then provided. All other as-

pects of the formulation follow those of the bilinear model described in the previous section.

3.4.1 Stress-Strain Curves and Hardening

The inviscid uniaxial stress-strain curve for the material is represented by: (1) the linear

hardening model shown in Fig. 3.5, (2) a linear, power-law model shown in Fig. 3.8 or (3)

by a general piecewise-linear curve of the type shown in Fig. 2.1. To maintain continuous

values of E T between the initially linear and power-law regions, a small (cubic) transition
curve is inserted automatically in the description of the stress-strain curve.

For a small-strain analysis (linear kinematic formulation), specify engineering values

for the strain(eE) and stress (aR). For a finite-strain analysis (nonlinear kinematic formula-
tion), specify the uniaxial stress-strain curve using the logarithmic strain, e, and the true
(Cauchy) stress, a. For a finite-strain analysis, the user should convert conventional engi-

neering strain, eE, and engineering (nominal) stress, a E, values for input using the relations:

a = aE(1 + eE) (3.58)

e = ln(1 + eS) (3.59)

The above conversions assume incompressible, homogeneous deformation. The true stress-
true strain curve discussed here assumes homogeneous, uniaxial deformation of the mate-

rial, i.e., prior to necking. Once necking occurs, the above expressions are no longer applica-
ble. More elaborate corrections, for example those developed by Bridgeman, are required.

Once yielding begins, the inviscid hardening follows the isotropic model.

Chapter 3 3.4-1 Elements and Material Models

User'sGuideD WARP3D Material mises _

%
/ Cubic transition region to
/ maintain continuous tangents

_70
Q) a o = yld_pt eo -
_ E E

Plastic straining begins at 0.95a o clue to
the small transition region

0

o Log Strain

FIG. 3.8--Power-law form of the inviscid uniaxial (tensile) stress-strain curve for
the "mises"plasticity material model. For finite-strain analysis, input the Cauchy stress
and log strain description.

w

3.4.2 Model Properties

The properties defined for material model raises are listed in Table 3_4. When the curve op-
tion is invoked to indicate a separately defined piecewise-linear stress-strain curve, Young's

modulus must still be specified. Thermal expansion coefficients are identical to those listed
for the bilinear model.

3.4.3 Model Output

By default, the material model prints no messages during computations. If requested, the
material model prints the element number and strain po_.t number whenever the effective

stress first exceeds the specified yield stress. This option is requested with the nonlinear

solution parameter material messages on (refer to Section 2.9.8)

The model makes available the strain energy density, U0, at each Gauss point to the

element routines for subsequent output. U0 at step n+l is evaluated using the trapezoidal
rule

U_0+1 = U_0 + l(tn+l + tn): Ad (3.60)

where the unrotated Cauchy stresses and unrotated strai a increments are adopted for the

finite-strain formulation. Thermal contributions to Ad are subtracted prior to the above

computation.

The element stress output contains up to three values for the material model "state"
variables. These values for the mises material are:

Elements and Material ModelsChapter 3 3.4-2

User's Guide _ WARP3D Material mises

The following sections describe the techniques used to solve Eq. (3.61) first for the invis-

cid case with power-law hardening and then for the general viscoplastic case. Once Ae p and
a_(e p) are determined from these calculations, the correction of the trial deviatoric stress
. ":in+ 1: ___..... ._ ,_-^ ___1,,_;,,_ atic stress terms roceeds exactl as for theco _ne ylelQ Surlac_ _tllu _11_ l_._,,_,_ ofhydrost p y
bilinear model. Also discussed here is the proper definition of H' for use in the consistent

tangent operator to model the power-law hardening and viscoplastic cases.

Rate-Independent Consistency Equation

When the uniaxial tensile response has other than linear (constant) hardening, Eq. (3.61) is

nonlinear in the plastic strain increment, AeP, and requires an iterative solution. Re-write

Eq. (3.61) in the form

R =a T-3GAe p-oe(ep n+Ae p)=0 (3.62)

where a T, the shear modulus G and the scalar plastic strain at the beginning of the step (_)

remain fixed during the solution of this equation to make R--* 0. The user-supplied form of

ae(_) can be quite complex (power-law hardening with an initial cubic transition region or

piecewise-linear). Power-law hardening, preceded by a small cubic transition curve, defines

a very smooth decay of the tangent modulus (E T) with increasing strain and leads to a very
stable solution of Eq. (3.62) via a local Newton iteration. However, the piecewise-linear for-
m often causes such a local Newton procedure to fail: the stress-strain curve may be defined

to "stiffen" after an initially low hardening region, for example, due to Luder's strains an-

d/or the discontinuous E r values at break points on the curve can mislead a pure Newton
scheme. After much experimentation, we have adopted a variant of the false position ap-

proach, known as Ridders' method, to iteratively solve Eq. (3.62) in all cases. The method
has superlinear convergence and readily eliminates the difficulties of a pure Newton

scheme. The procedure insures that during iterations the cureent estimate of A@ never

strays outside the lower-bound value of 0.0 and the upper-bound value found by assuming

that o_(_ n + 1) = oe(_n), i.e. no further hardening. The procedure converges to very tight toler-

ances on Ae p and oe(_n+ 1) in 2-3 cycles and has proven very robust.

When the uniaxial stress-strain curve follows the power-law model, the evaluation of

ae(ePn + AEp) for each trial value of Aep (during Ridders' method) itself requires a local New-
ton iteration as described below. The power-law model is defined by (neglecting yet more

complication with the initial cubic transition region and dropping the implied e subscript)

e _ a (3.63a)
_0 00' E _ E 0

e _ (3.63b1
E0 _00 ' E > _0

where a 0 and e0 are reference yield stress and strain levels that also define E. To evaluate
Eq. (3.63b) given an estimate of Aep, write

On+l + EPn _- AEP (3.64)
En+l = ---E---

This is a simple, nonlinear equation solved readily for en + 1 and thus 0 n + 1using a local New-
ton scheme. Define the residual, R, of Eq. (3.64) by

On + 1 (3.65)Ep
R = En+ 1 E n+l"

i

For the (i) estimate of en+ 1, find the change in R such that R+dR= 0 where

Chapter 3 3.4-5 Elements and Material Models

User'sGuide- WARP3D Material mises

dR- OR
1den+ 1 • (3.66)Oen +

The required derivative is found to be

-- 1- -1--=-/_n+l__-1aR"
- - N \--%-0] (3.67)0En + 1

Successive improvements to the value of En + 1 are thus

-- (i) = e (i) _i)
E(i+]) _(i) + aen+ _ (3.68)

n+l = en+l 1 n+l OR

aEn+:

Iterations continue until convergence on en + 1 and a n + 1 is achieved. Suitable convergence
tests are

a(i+1)n+ 1 -- t_n-(i)+ 11 < tu_^7a(i +1)n+] (3.69)

en+l(i+l) _ e(i)n+ 1] -< tol E(i+l)n+l (3.70)

where we specify 10 -6 for tol. The starting estimate e (1) is given by
n+l

e (1) ---- e o + Ae p (3.71)
n+l

We find convergence is achieved in at most 3 iterations over Eq. (3.65) - (3.70). The instanta-
neous plastic modulus, needed for the consistent tangent, is given by

EET_ + I

H'n+l -]E - ET,n+ 1

E/an+l_ (l-N)

Er +: =]

where

(3.72)

(3.73)

With a converged value for AePgiven by the solution of Eq. (3.61), the updated stress state is
computed by the usual radial return to the updated yield surface (isotropic hardening)

{O}n+l _ {aT}n+l 3GAEP {ST}n+ 1 { } implies a 6xl vector (3.74)
a T

where {ST}n +l is the deviatoric portion of the trial elastic stress state{aT}n + 1"

Rate-Dependent Consistency Equation

To introduce a rate dependence into the model, re-write the consistency equation of Eq.
(3.61) in the form

a T - 3GA_ vp - q(_VnP+:,_e,n+l, At) --- 0 (3.75)

where q denotes the rate-dependent equivalent stress, ae# + 1 becomes the inviscid equiva-
lent stress (which may be a nonlinear function of evp) ant At = t n + 1 - tn. We adopt a pow-
er-law viscoplastic relationship suitable for ductile met-As undergoing large amounts of
plastic straining. The viscoplastic strain rate is given by

Chapter 3 3.4-6 Elements and Material Models

User'sGuide--WARP3D Material mises

mat_vail: matrix plastic strain, _ = _(2/3)e_.E_

mat_val2: matrix equivalent stress, _ = _(3/2)a_' o,j'

mat_val3: not used

3.4.4 Computational Efficiency

The computational routines for this model process elements in blocks of a size matched to

the vector length of the computer (i.e., Crays) or to the cache size of the workstation. The

majority of model computations are written in vectorized code. The local Newton loop to
solve the scalar consistency equation executes in scalar mode. In terms of efficiency, the

constant (linear) hardening form of the stress-strain curve incurs the least computational

effort for inviscid analyses (no local Newton loop is needed to solve the consistency equa-

tion). The piecewise-linear model provides the next most efficiency followed by the power-
law model. The large number ofexponentiations required with the power-law model signifi-

cantly increases the computational effort (often 25% total job time) in most cases. We

strongly recommend description of stress-strain properties with the piecewise-linear model
even when the material description follows the power-law description--just to reduce the

computational effort.

Our testing indicates the piecewise-linear model combined with the viscoplastic option
can reduce the convergence rate of global Newton iterations. No such degradation is experi-

enced with simple linear hardening or power-law hardening combined with viscoplasticity.

This model is computationally less efficient than the simple bilinear model of the pre-

vious sections.

Model Property

Young's modulus

Poisson's ratio

Mass density

Yield stress

Hardening modulus (ET)

Keyword

e

nu

rho

yld__pt

tan_e

Mode

Number

Real

Number

Number

Number

Default
Value

0.0

0.0

0.0

0.0

0.0

0.0iPower law exponent (n) n_power Number

Reference strain rate (D) ref_eps Number 0.0

Viscous exponent (m) m__power Number 0.0

Stress-strain curve curve Number 0

Chapter 3 3.4-3 Elements and Material Models

User'sGuidem WARP3D Material mises

Thermal expansion coefficient

for isotropic response

Thermal expansion coefficients
for anisotropic response

alpha

alphax, alphay,
alphaz, alphaxy,
alphaxz, alphayz

Number

Number

0.0

0.0

Table 3.4 Properties for mises Material Model

3.4.5 Example

The following example defines the properties for two mild steels material frequently used

in fracture models and assigns the material to some elements.

structure cct

c

stress-strain curve 3

0.0012 36 0.01 36, 0.05 50,

0.i0 55, 0.30 60

c

material a533b

properties mises e 30000 nu 0.3 yld_pt 60.0

rho 7.3e-07 ref_eps 40 m_power 20

c

material a36

properties mises e 30000 nu 0.3 curve 3 rho

c

number of nodes 25642 22092

c

elements

n_power i0,

7.3e-07

14000-22092 type 13disop linear material a533b order 2x2x2,

long bbar

I,U

3.4.6 Plasticity Algorithms

The formulation and implementation of the general, rate-dependent mises model differs
from the bilinear model in the complexity of computing tl:. e term2At. Eqs. (3.45) and (3.46)

define the deviatoric terms of the updated stress state as a return to the new yield surface

along the direction of trial elastic deviator (which for Mises is normal to the updated yield
surface). Eq. (3.47) then represents the scalar product of each side of Eq. (3.45) and defines

the so-called scalar consistency equation for determination hAt. Using the relationships of

Eqs. (3.33) and (3.34), the consistency equation may be written in the simpler form

a T - 3GA_ p - Oe(ePn + 1) -- 0 (3.61)

where a T is the equivalent uniaxial stress computed from the elastic trial stress at the step

(n+l) [see Eq. (3.41)], G is the elastic shear modulus, AEPi._ the unknown increment of plas-

tic strain over the step, Ae p = ep +. - ep, and ae(e p ' ,) is the equivalent (Mises) stress corre-. . . n n-r_ . .
sponding to the plastic strmn at Be end of the step. The analyst prowdes the functional

relationship, ae(eP), through the uniaxial stress-strain curves described previously [to

make this simpler, the analyst actually specifies ae(_-) rather than ae(eP)].

Elements and Material ModelsChapter 3 3.4-4

User's Guide- WARP3D Material mises

where t/ and m are material constants. The viscosity term is often written in the form

D = l/t/. In the simplest case, ae is specified to remain constant at the yield stress, a 0. More

generally, ae is a nonlinear function of evp.

The integration of Eq. (3.76) with a backward Euler procedure yields

]AEvP = _ \ _ / -1
(3.77)

which is solved for qn+l

1/m

an+l = ae,n+l[(_--_EvP)+ 1] (3.78)

We observe in Eq. (3.78) that as t//At --* 0 the inviscid solution is recovered. The rate-depen-

dent consistency equation, Eq. (3.75), is also solved using Ridders' method for Ae vp with

q n + 1defined as in Eq. (3.78). Convergence is achieved in a few iterations. With Ae vp known,
the updated stress state at n+l is given by the usual radial-return to the yield surface

3GAevP {ST}n+ 1 (3.79)
{O}n+l = {OT}n+ l or

To form the consistent tangent, the instantaneous plastic modulus for the rate-dependant

equivalent stress is required

--dd-_vPn +H'q_+ 1 = 1

(3.80)

We must obtain H n + 1 by differentiating the algorithm that defines the evolution of q.q,

From Eq. (3.77) we obtain

_ mat (qn+l _rn-l(Oe,n+ ldqn+l - an+ ldGem+ 1_
deVnP+l d(AevP)

t/ k_] _2--] . (3.81)e,n+ 1

By substituting for doe,n+ 1 in terms of the plastic modulus for the inviscid response Eq.
(3.72)

doe,n + 1 = H'n + ldeVnP+1 (3.82)

Eq. (3.81) is solved for H'q,n+ 1 as

dq I - t/ae'n+l(qn+l_ 1-m (qn+l_n' (3.83)
H'q'n+l - devP--n+l n+l _-_ _/ Jr- \ae--_-_+l/ n+i

The plastic modulus H'q_ +1 provides the value of H' that appears in the consistent tangent
operator, Eq. (3.55). Note that as t//At --* 0 in Eq. (3.83), qn + 1/°e,n + 1 must also ---1 and the

inviscid H' n + 1 is recovered.

Chapter 3 3.4-7 Elements and Material Models

User'sGUidem WARP3D Material gurson

3.5 Material Model Type: gurson

This material model implements the Gurson-Tvergaard (GT) plastic potential to predict

the response of an elastic-plastic solid containing voids (Gurson [29], see Tvergaard [88]

for a comprehensive review). The basis for the model derives from analyses of a single cell

containing a centered spherical void of initial volume fraction f0. The void volume fraction,
f, increases under loading and eventually leads to a gradual loss of stress carrying capacity

for a macroscopic material element. With this model, a material element effectively con-

tains a void of volume fraction f and (solid) matrix material of volume fraction (l-f). The
matrix response follows the material's uniaxial (tensile) stress-strain properties which can

be represented in one of several ways and can also include viscoplastic effects.

The GT yield condition is given by

g(ae, em,_,f)

where ae denotes the (Mises) equivalent (macroscopic) stress, am is the mean (macroscopic)
stress, His the (Mises) equivalent stress of the matrix andfis the current void fraction. Fac-

tors q 1, q2, and q3 introduced by Tvergaard improve the model predictions for periodic ar-
rays of cylindrical and spherical voids. When f = 0 the yield condition reduces to conven-

tional J_ plasticity. The computations for this model should be carried out with the finite

strain formulation (nonlinear element property) so teat Cauchy stresses are used in the
evaluation of Eq. (3.84).

The current implementation employs a backward Euler technique developed by Aravas

[2] to integrate the plasticity rate equations. This procedure is unconditionally stable there-
by permitting the use of larger load increments than is possible with traditional forward

Euler and semi-explicit procedures. However, the use of large load increments can lead to
non-convergence of Newton loops within the model to resolve updated state variables.

This model offers thxee forms for the mxiaxial (tens Je) response of the matrix material,
an option to include viscoplasticityin the response and a strain-controlled nucleation model

to initiate new voids at severe levels of plastic deformation. The response to temperature

changes imposed in the analysis follows that described previously for the bilinear model.

3.5.1 Stress-Strain Curves

The inviscid uniaxial stress-strain curve for the material is represented by: (1) the linear

hardening model shown in Fig. 3.5, (2) a linear, poweJ-law model shown in Fig. 3.8 or (3)
by a general piecewise linear curve of the type shown in Fig. 2.1. To maintain continuous

values of E T between the linear and power-law regions, a small (cubic) transition curve is
inserted automatically in the description of the stress-strain curve. For the piecewise linear

curve, the jumps in E r across segments can adversely affect convergence of local Newton
iterations used to solve the consistency equation (fewer segments and a non-stiffening
curve work best).

For a small-strain analysis (linear kinematic form ulation), specify engineering values

for the strain(e E) and stress (aE). For a finite-strain an_/ysis (nonlinear kinematic formula-
tion), specify the uniaxial stress-strain curve using the logarithmic strain, e, and the true
(Cauchy) stress, a. For a finite-strain analysis, the user should convert conventional engi-

neering strain, e g, and engineering (nominal) stress, a E, values for input using the relations:

o = aE(1 + eE) (3.85)

Chapter 3 3.5-1 Elements and Material Models

User'sGuide_ WARP3D Material gurson

• = ln(1 + •E) (3.86)

The above conversions assume incompressible, homogeneous deformation. The true
stress-true strain curve discussed here assumes homogeneous, uniaxial deformation of the

material, i.e., prior to necking. Once necking occurs, the above expressions are no longer

applicable. More elaborate corrections, for example those developed by Bridgeman, are re-

quired.

3.5.2 Viscoplasticity

To introduce a rate dependence into the matrix response, we adopt a power-law viscoplastic

relationship suitable for ductile metals undergoing large amounts of plastic straining. The

viscoplastic strain rate is given by

]evp = D _ee - 1 (3.87)

where D and m are user-specified material constants, q denotes the rate-dependent (uni-
axial) tensile stress and Oe the inviscid (uniaxial) tensile stress. The viscosity term is oi_en

written in the form D=l/r 1. For a moderately rate-sensitive material, such as an A533B

pressure vessel steel at 100 ° C, typical values of D and m are 1.0 (in./in./sec) and 35, respec-
tively. In the simplest case, ae is specified to remain constant at the yield stress, o 0 (the lin-

ear hardening model with E T = 0). More generally, ae is a linear or power-law function of
•vp.

We recommend that the piecewise-linear description of the tensile stress-strain curve not

be used with the viscoplastic option at this time. Convergence of the global Newton itera-
tions is sometimes reduced; no such problems occur for the linear or power-law hardening

options.

3.5.3 Nucleation Model

The volume fraction of voids increases over an increment of load due to continued growth

of existing voids and due to the formation of new voids caused by interfacial decohesion of

inclusions or second phase particles. Thus,

df = dfgrowt h + dfnucleation • (3.88)

The growth component is defined by the current volume fraction of voids and the macro-
scopic change in void fraction is (the matrix material satisfies plastic incompressibility)

dfgrowt h = (1 -- f)d,_ p : I = (1 - f)d•p . (3.89)

We adopt an evolution model for nucleation based on current plastic strain in the matrix

dfnucleatio n = ._(@)d@ . (3.90)

Chu and Needleman suggest a form for _t as

fY exp[- (-._N_:I (3.91)

..4.- SN] j

where the nucleation strain follows a normal distribution with a mean value •N and a stan-

dard deviation sN with the volume fraction of void nucleating particles given by fN" A sire-

Elements and Material ModelsChapter 3 3.5-2

User's Guide -- WARP3D Material gurson

pler form of Gurson's model which neglects nucleatio_ is derived by setting _A - 0 (three
fewer material parameters are then required).

Default

Model Property Keyword Mode Value

Young's modulus e Number 0.0

Poisson's ratio nu Real 0.0

Mass density rho Number 0.0

Yield stress yldpt Number 0.0

Hardening modulus (JET) tan_e Number 0.0

1

Power law exponent (n) n_power Number 0.0

Reference strain rate (D) ref_eps Number 0.0

i
Viscous exponent (m) m_power i Number 0.0

Initial porosity (f0) f_O Number 0.0

Yield function parameter ql ql Number 1.5

Yield function parameter q2 q2 i Number 1.0

Yield function parameter q3 q3 _Number 2.25

Include nucleation of new voids nucleation Logical .False.

Nucleation parameter fN f_n Number 0.04

Nucleation parameter SN s_n Number 0.10

Nucleation parameter _N e_n Number 0.30

Put element in kiUable list killable Logical .False.

Suppress step size cutbacks no_cutback Logical .False.

Stress-strain curve curve Number 0

Table 3.5 Properties for gurson Material Model

Chapter 3 3.5-3 Elements and Material Models

User'sGuide_ WARP3D Material gurson

3.5.4 Element Extinction

Under increasing deformation, the void volume fraction reaches a level at which the ele-

ment capacity to resist stress decreases precipitously. This final stage of deformation just

prior to material separation is not realistically predicted with the GT model (even though

the numerical computations remain stable to very high levels off, approaching 0.5).

Chapter 5 describes an extinction procedure which removes elements from the model
and slowly reduces the remaining tractions to zero. This occurs when the void fraction f

reaches a user-specified level, denoted fE" The crack growth procedures in Chapter 5 apply
only to elements which have an associated gurson material with the material logical prop-

erty killable specified.

When the killable property is not specified, the stress updating process continues with

fincreasing. Eventually, the model routines may request load step reductions to stabilize

the state update process.

3.5.5 Adaptive Step Sizes

By default, the gurson model routines request a global load step cutback when the state

update process fails to converge. If the nonlinear solution parameter adaptive on is in effect

(see Section 2.9.4), the global load step reduction occurs and subsequent gurson computa-

tions nearly always converge. If the nonlinear solution parameters have adaptive off, the

gurson routines print an message describing the convergence problem and terminate the

analysis.

Users may disable the automatic cutback requests in the material model through the

model property no_cutback. If the state update process fails to converge, the model immedi-

ately terminates execution of the program.

3.5.6 Model Properties

The properties defined for material model gurson are listed in Table 3.5. When the curve

option is invoked to indicate a separately defined piecewise--linear stress-strain curve,
Young's modulus must still be specified. The thermal expansion coefficients are specified

as described previously for the bilinear and mises models.

3.5.7 Model Output

By default, the material model prints no messages during computations. If requested, the
material model prints the element number and strain point number whenever the effective

stress first exceeds the specified yield stress. This option is requested with the nonlinear

solution parameter material messages on (refer to Section 2.9.8). Messages about requests

for global load step reductions are always printed.

The model makes available the strain energy density, U0, to the element routines for

subsequent output. U0 at step n+l is evaluated using the trapezoidal rule

U_0+1 = U_0:1- l(tn+l + tn): Ad (3.92)

where the unrotated Cauchy stresses and unrotated strain increments are adopted for the
finite-strain formulation.Thermal contributions to Ad are subtracted prior to the above

computation.

The element stress output contains up to three values for the material model "state"

variables. These values for the gurson material are:

Chapter 3 3.5-4 Elements and Material Models

User'sGuide- WARP3D Material gurson

mat_vail: matrix plastic strain, _P

mat_val2: matrix equivalent stress,

mat_val3: current void fraction, f

3.5.8 Computational Efficiency

The computational routines for this model process elements in blocks of a size matched to

the vector length of the computer (i.e., Crays) or to the cache size of the workstation. The

majority of model computations are written in vectorized code. The local Newton loops to

solve the scalar consistency equations execute in scalar mode. Our experience with these

algorithms indicate that the linear (constant) hardening model requires by far the least
computational effort and provides the most robustness in terms of handling large step

sizes. The power-law representation of the stress-strain curve is equally robust but is much

more expensive due to the sub-iterations needed to compute the uniaxial stress given an

estimate for the increment of plastic strain, combined with the large number of exponential
operations (the power-law model can increase total execution time by 25%). The stress-

strain curve defined by piecewise linear segments provides the least robustness of the three

models. Convergence often fails during iterations to resolve the consistency equation; how-
ever, the algorithms are sensitive to the number of segments (fewer is better).

Our testing also indicates the piecewise-linear model combined with the viscoplastic option

can reduce the convergence rate of global Newton iterations. No such degradation is experi-

enced with purely linear hardening or power-law hardening combined with viscoplasticity.

This model is computationally less efficient than the. mises model of the previous section.

3.5.9 Example

The _owing example defines the properties for a mild steel material _equently used in
_acture models and assigns the material to some elements.

structure oct

c

material a533b

properties gurson e 30000 nu 0.3 yld_ot 60.0 n_power 10,

rho 7.3e-07 ref_eps 40 m_power 20 f_O 0.005 killable

c

number of nodes 25642 22092

c

elements

14000-22092 type 13disop linear matecial a533b order 2x2x2,

long bbar

c

3.5.10 Plasticity Algorithms

Material Elasticity and Yield Criterion

The material is elastically isotropic and for a specified increment of total (macroscopic)
strain,

A{$ ---- {$n + 1 -- En (3.93)

the trial (T) elastic stress state is defined by

T D ean+l = an + :Af . (3.94)

_wg

Elements and Material ModelsChapter 3 3.5-5

User's Guide m WARP3D Material gurson

We use bold italics to denote a second-order tensor, bold roman indicates a symmetric

fourth-order tensor, and : denotes the operator consistent for the order oftensors involved,

e.g., (C : B)ij = Cu_lBkt. Italic symbols denote scalar variables. All tensor components are
given with respect to a fixed, Cartesian system.

T T mWe define S n + l as the deviatoric component of O n + 1 fro which the equivalent (macro-
scopic) stress is given by

3 T T 1/2

qTn+1= (_S_Sij)n+ 1 (3.95)

Similarly, the trial hydrostatic stress is given by

T 1 T 1 TPn + 1 = -- -3an + 1 : I = -- _(all + (722 + a33)n + 1 • (3.96)

Gurson's yield function is given by

2

g = (q) + 2qlfcosh (3q_)-(1+q3f2)=0 (3.97)

where q 1, q2, q3 are material constants, fis the current void fraction andg is the current
(Mises) equivalent stress of the matrix. Most often, q 1 = 1.5, q2 = 1 and q3 = q2 to match

the response of discrete hole growth models under pure shear and pure hydrostatic loading.
We evaluate the yield criterion for the trial elastic state using current values of the (scalar)
state variables

T T T
gn+ l = g(qn+ l,Pn+ l, fn, On) • (3.98)

The material loading is defined by

gT < 0 linear -- elastic
n+l (3.99)

gT > 0 plastic loadingn+l --

Unloading from a previously plastic state is treated inelastically such that

T (3.100)
an+ 1 ---- On+ 1

with the internal state variables retaining their values at n.

Plasticity Rate Equations

When the material is loading plastically as indicated by Eq. (3.99), the macroscopic contin-

uum flow rule is expressed as

deP = dA _aa (3.101)

where dA is the (positive) plastic multiplier. Integration of the plastic strain rate over the

step using the backward Euler procedure yields

A@ = AA °g_ (3.102)
o(/ n+l

The derivative of the yield function in Eq. (3.102) is written in the terms of the hydrostatic

and deviatoric contributions to provide

AeP = AA(- I Og" + _qn)ln+ 130p- (3.103)

Chapter 3 3.5-6 Elements and Material Models

User'sGuide- WARP3D Material gurson --

where the unit normal n is defined by

_ 3 Sn + 1 • (3.104)
nn+l 2qn+l

To simplify subsequent expressions, we introduce definitions for the (scalar) volumetric and
deviatoric plastic strain as

Aeq= AA(_)n+l

(3.105)

(3.106)

and substitute into Eq. (3.103) to give

AE p = 1/kE1_ + /X_qnn+ 1 • (3.107)

If the updated stress state at n+ 1 is written in terms of the usual volumetric and deviatoric

components

an+ 1 = -- Pn+l I + Sn+ 1 (3.108)

then with the notation defined by Eq. (3.104), the updated stress state also may be written
in the form

2
an+ 1 = -- Pn+l I + Sn+ 1 = - Pn+l I + _qn+lnn+l (3.109)

In terms of the trial elastic stress state, the updated stress state may be constructed as fol-
lows:

an+ 1 = On + De: (Ae -- Ae p) (3.110)

where the first two terms on the right side combine to define the trial elastic state such that

T -- D e : Ae p (3.111)On+ 1 = On+ 1

The negative term on the right side defines a plastic stress correction for the trial elastic
stress. Using Eq. (3.107), this term may be expressed in the form

D e : Ae p = KAepl + 2GAeqnn+ z (3.112)

where K and G are the elastic bulk and shear modulus, respectively. Substitution of Eq.

(3.112) into Eq. (3.111) provides a convenient form of the updated stress as

an+l = On+lT -- KAepI - 2GAeqnn+ 1 . (3.113)

In the above equation, the trial elastic stress state is co]Tected (i.e. returned) to the updated

yield surface. In deviatoric space, the return direction i _ along the normal defined by n n + 1"
Using the material elasticity, we also have the followi _g relations for the updated hydro-
static and equivalent stress

(3.114)
T

Pn+ l = Pn+ l + KAep

T -- 3GAeqqn+l "= qn+l (3.115)

_mB J

Chapter 3 3.5-7 Elements and Material Models

User'sGuide-- WARP3D Material gurson

which prove very useful in the numerical processes described below.

The key step in the backward Euler scheme defines the return normal direction as the dev-
iatoric direction of the trial elastic state as, using Eq. (3.95) and Eq. (3.104),

3 T (3.116)
Sn+l

nn+ 1 - 2q_+ 1

which yields finally

3GAeq -T
T Sn+l " (3.117)
"Zn+ 1

T -- KAepIOn+ 1 -_ On+ 1

This choice for the return direction simplifies greatly numerical solution for the updated

stress state; in 3-D the number of unknowns is reduced by 6, the number of unique terms

in n n + 1. A more detailed discussion of similar return mapping algorithms is given by Simo.

From Eq. (3.113), a knowledge of Aep, Aeq fully defines the updated stress state. The nu-
merical solution must determine values for these scalar parameters so that Ae p satisfies

the flow rule over the step and the updated stresses satisfy the yield criterion. In the process

of computing Aep, Aeq, the internal state variables are updated as well.

Internal State Variables

Gurson's model includes a set of state variables which partition the macroscopic stress-
strain into the matrix material and the "smeared" voids. These state variables define the

microscopic plastic strain in the matrix and the current volume fraction of voids.

Plastic Strain in the Matrix

Plastic work in the matrix is taken to be a relative fraction, l-f, of macroscopic plastic work

such that

(1 - f)_de -p = a : d_ p (3.118)

where e-pdenotes the matrix plastic strain. This rate equation is integrated over the step

using backward Euler and solved for the increment of plastic strain in the matrix

A_- p = On + 1 : AfP (3.119)
(1 - fn+ l)_n+ l

where the numerator simplifies considerably to provide

Ae--p= - Pn+ IAeP + qn+ lAeq (3.120)
(1 -- fn+l)_n+l

A variety of models for the evolution of E, the equivalent matrix stress, with increasing plas-
tic strain in the matrix may be defined. Both inviscid and power-law viscoplastic models

are discussed in a subsequent section.

Evolution of Void Fraction

The volume fraction of voids increases over an increment due to continued growth of exist-

ing voids and due to the formation of new voids caused by interfacial decohesion of inclu-

sions or second phase particles. Thus,

df -_ dfgrowt h _- dfnucleatio n • (3.121)

The growth component is defined by the current volume fraction of voids and the macro-
scopic change in void fraction is (the matrix material satisfies plastic incompressibility)

Chapter 3 3.5-8 Elements and Material Models

User'sGuide- WARP3D Material gurson __

dfgrowt h = (1 -- f)de p : _/= (1 - f)d_p . (3.122)

We adopt an evolution model for nucleation based on ,'urrent plastic strain in the matrix

dfnucleatio n = Jt(@)d@ . (3.123)

Chu and Needleman suggest a form for _ as

,j (3.124)

where the nucleation strain follows a normal distribution with a mean value _N and a stan-

dard deviation s y with the volume fraction of void nucleating particles given by fg" A sim-
pler form of Gurson's model which neglects nucleation is derived by setting .4 -= 0 (three

fewer material parameters are then required).

Equation (3.122) and its component terms are integrated using backward Euler to obtain

Af = (1 - fn+l)Aep + _t(_n+l)Ae-P . (3.125)

Equations (3.120) and (3.125) comprise a pair of coupled, nonlinear algebraic equations to
update the microscopic state variables f, @ for specified values of the macroscopic plastic

strains Aep, Aeq.

Response of the Matrix Material

A variety of models for the evolution of _, the equivalent matrix stress, may be defined.
Here we consider two inviscid models, the first of which is

= a 0 + H'@ (3.126)

where H' is the specified (constant) plastic hardening modulus (H' may be zero) and a 0 is

the specified uniaxial yield stress. The second inviscid model is a simple power-law with

initially linear response

- _ _ _< e 0 (3.127)
_0 O0 '

g
Go

where the total equivalent strain in the matrix, g, is ,¢imply _ = g/E + _ and E = ao/e o.

Eq. (3.128) is solved iteratively for g with a local Newton loop for a given value of plastic
strain in the matrix, _. The plastic modulus, H', is then found by

H'- EET (3.129)
E - E T

where the tangent modulus is defined from Eq. (3.12_) by

E [g _(l-N)
ET = Y\'_o/

To model a viscoplastic matrix material, we adopt a power-law model of the form

(3.130)

(3.131)

Elements and Material ModelsChapter 3 3.5-9

User's Guide " WARP3D Material gurson

where _/and rn are material constants and ae is the inviscid equivalent stress for the matrix.
The viscosity term is often written in the form D=lh 1. In the simplest case, Oe is specified

to remain constant at the yield stress, o 0. More generally, ae is a nonlinear function of

along the lines of Eq. (3.128).

The integration of Eq. (3.131) with a backward Euler procedure yields

I(On+llm--1]\ai'n+l] (3.132)/x@ = _-__

where subscript i denotes the inviscid response at the same plastic strain in the matrix.

This expression is solved directly for En + 1

On+,= +1 (3.133)

We observe in Eq. (3.133) that as _l/At -* 0 the inviscid solution is recovered. Each of

the above models for En + 1 are functions of the plastic strain in the matrix and can thus be

resolved during the solution for Aep, Aeq. The plastic modulus is given by

H' dE _ (g l-m g H'-- d-- E n+l m koi] "F() i (3.134)

where all terms on the RHS of (3.134) are evaluated at n+l.

Summary of Updating Process

The stress updating process requires computation of a set of stresses defined by Eq. (3.117)

for which the flow conditions given in Eq. (3.105) and Eq. (3.106) are satisfied consistent

with updated values of the internal state variables. The proportionality factor AA is elimi-

nated by dividing Eq. (3.105) by Eq. (3.106) to define the relationship between the incre-
ments of volumetric and deviatoric plastic strain as

This relationship together with satisfaction of the yield criterion at n+l using stresses of

Eq. (3.117)

gn+l = g(qn+l' En+l, Pn+l'fn+l) ---- 0 (3.136)

defines a pair of nonlinear algebraic equations for numerical solution. The primary un-
known variables in these two equations are the macroscopic plastic strains AEp, Aeq.

These equations are solved iteratively using Newton's method. Given estimates

for Aep and Aeq, the updated stress state, Pn+ 1 and qn + 1, are given by Eq. (3.114) and Eq.
(3.115). The internal state variables, _, E and f, are updated to n+l by solving these three

equations simultaneously, Eqs. (3.120) and (3.125) are repeated for clarity)

-- Pn+lAep + qn+lAEq

A_--P ---- _+1 - _ -= (1 -- fn+l)_n+l

_f = fn+l -- fn = (1 - fn+l)_O + _(_+1) _ •

En+1= 0--(_+i)

(3.137)

(3.138)

(3.139)

Chapter 3 3.5-10 Elements and Material Models

User'sGuidem WARP3D Material gurson

The numerical complexity in updating e-p andfdepends on the form adopted for _(e-p) and
whether or not the nucleation component of fis included. If a-(e-p) of the form defined by Eq.

(3.126) is adopted and Jt -= 0, the above three equation reduce to a single linear equation
for Ae-p after which Af is found directly as well. In other cases, another level of Newton's

iterations is required to resolve Ae-p and Af consistent with g.

Chapter 3 3.5-11 Elements and MateriaI Models

Chapter 4

Domain Integrals

4.1 Introduction

Finite element methods are especially powerful for computing linear and nonlinear frac-

ture mechanics parameters. For linear analyses, the stress-intensity factors, K I, are readi-

ly determined from the energy release-rate interpretation of the J-integral (Rice [75],

Knowles and Sternberg [53], Budiansky and Rice [10]). For nonlinear analyses, the intensi-
ty of deformation along the crack front is generally characterized by the Crack Tip Opening

Displacement (CTOD) and/or a pointwise value of the J-integral. In two-dimensions, the

J-integral sets the amplitude of the singular field near a sharp crack tip, as given by the
HRR solutions (Rice and Rosengren [74], Hutchinson [45]), under certain limiting condi-

tions involving material constitutive behavior and the extent of plastic deformation rela-
tive to the uncracked ligament size. In three-dimensions, the situation is not nearly so

clear; the nature of near-tip fields in 3-D remains a focus of current research. Remote from
traction free surfaces, the crack front fields may closely resemble those of plane-strain; near

free surfaces the fields exhibit strong 3-D effects. However, purely mechanical arguments

concerning the energy flux show that the J-integral provides a local energy release rate in-

dependent of the exact singular form of the near tip fields. Under these conditions, J charac-
terizes the crack driving force.

This chapter describes the Domain Integral (DI) capabilities implemented in WARP to

compute J-integral values in 3-D (Mode I) following the solution for a load step (Li, et al.
[55], Moran and Shih [60] [61], Shih, et al. [81]). The DI procedures are more general and

simpler for the analyst to specify than the earlier Virtual Crack Extension (VCE) technique
(Parks [72], Helen [34]). The analyst defines nodal values of a weight function which may

be interpreted as the motion of material near the crack front due to a virtual crack exten-
sion. The numerical computations then require evaluation a volume integral over elements

in 3-D which includes the energy density, the stress field, the displacement, velocity, accel-
eration fields and the weight functions. Weight functions over elements are constructed

from the specified nodal values using conventional isoparametric procedures. This quickly
becomes an onerous task; however, capabilities are included for automatic generation of the

weight function values which greatly simplify J computations in 3-D crack configurations.
An option for the user to specify directly the weight function values on a node-by-node basis
remains available.

The procedures described in this chapter may be invoked following a linear or nonlinear

solution for a load step (static/dynamic). The user provides input commands to define a "do-
main" for evaluation of J followed by a compute domain integral command. The specifica-

tion of a single "automatic" domain by the user typically causes J evaluations over many

separate domains of increasing distance from the crack front. The computed J-value for
each domain and the variations J-values between the domains are printed (minimum J,

maximum J and average J for assessment of path independence).

The DI procedures currently implemented have these features/limitations:

• the material response is considered nonlinear elastic when the material model employs an
incremental plasticity theory (this is a very common assumption and avoids unnecessary
complications that arise from the explicit partial derivative of the stress work density)

Chapter 4 4.1-1 Domain Integrals

' User's Guide _ WARP3D

• the kinetic energy and accelerations of crack region _laterial in dynamic loading axe in-
cluded in J

• the effects of finite strains and finite rotations at material points are included in J

• the effects of rapid crack growth are not included in J ("slow" crack growth under dynamic
loading is supported)

• the effects of user specified loads applied to the crack faces axe included in J using an
approximate technique (these terms maintain path independence for domains remote from
the front). The J processor cannot properly distinguish between simultaneously applied
crack face loads and temperature loads (for crack face elements)

• initial strains caused by imposed thermal loading are included in J

• body forces, other than caused accelerations, axe ignored during J computations

The next section of this chapter provides a summary of the theoretical basis for the DI meth-

od. Other sections describe the numerical algorithms to evaluate the volume integrals and
input commands. Sample output from a computation illv_strates the various information
available.

w

Chapter 4 4.1-2 Domain Integrals

User'sGuide-- WAR P3D Background

4.2 Background

4.2.1 Local Energy Release Rates

A local value of the mechanical energy release rate, denoted J(s), at each point s on a planar,

non-growing crack front under general dynamic loading is given by

It[Oui]J(s) = r---01im (W + T)n 1 - Pji-_lnjJdF (4.1)

where W and T are the stress-work density and the kinetic energy density per unit volume

at t = 0; F is a vanishingly small contour which lies in the principal normal plane at s, and

n is the unit vector normal to F (see Fig. 4.1). Pji denotes the non-symmetric 1st Piola-Kirch-
hoff (1 st PK) stress tensor which is work conjugate to the displacement gradient expressed

on the t = 0 configuration, Oui/OX j, i.e., the stress-work rate is simply PijOui/OXj per unit
volume at t = 0. All field quantities are expressed in the local orthogonal coordinate system,

X1 -X2 -X3, at location s on the crack front.

This important result was first derived by Eshelby [23] and independently by Cherepa-
nov [13], and later by others considering only mechanical energy balance for a local transla-

tion of the crack front in the X1 direction (Mode I). Any form of loading (including crack face

tractions) and arbitrary material behavior is permitted when F --* 0. All proposed forms of

path independent integrals (contour, area, volume) for application in fracture mechanics
derive from Eq. (4.1) by specialization of the loading and material behavior (see for exam-

ple, Amestoy et al. [1], Bakker [5], Carpenter et al. [12], de Lorenzi [19] and Kishimoto et
al. [50]).

Moran and Shih [60] [61] have proven the local path independence of J on the actual

shape of F in the limit as F -_ 0 +. To have both path independence and a non-vanishing,

finite value, the integrand of Eq. (4.1) must have order 1/r. The quantity J defined by Eq.
(4.1) has no direct relationship to the form of the near-tip strain-stress fields, except for very

limited circumstances. For plane-stress and plane-strain conditions, with nonlinear elastic

material response and small-strain theory, J of Eq. (4.1) simplifies to the well-known J-in-

tegral due to Rice [75] that exhibits global path independence. Under the additional limita-
tion of small-scale yielding (SSY), J sets the amplitude of the HRR singular fields. The role

of J as a single parameter which characterizes the near tip strain-stress fields for arbitrary

loading (static, thermal, dynamic) and 3-D configurations is a topic of much current re-
search.

The stress-work density (W) per unit initial volume may be defined in terms of the me-
chanical strains as

t

W= IF] It:(d-dth)dt
(4.2)

0

where IFI denotes the determinant of the deformation gradient F = Ox/OX, t denotes the
uurotated Cauchy stress and d is the unrotated rate of deformation tensor computed from

the displacement gradients, d th denotes the contribution arising from specified thermal
strains. The kinetic energy density is given directly by

: /oui

Chapter 4 4.2-1 Domain Integrals

User'sGuide_ WARP3D Background _

where Q is the material mass density (sum on i) in the imtial configuration at t = 0.

The direct evaluation of Eq. (4.1) is cumbersome in a finite element model due to the

geometric difficulties encountered in defining a contour that passes through the integration

points. Such a contour is desired since the most accurate stress and strain quantities are

available at the integration points. Moreover, the limiting definition of the contour requires
extensive mesh refinement near the crack tip to obtain meaningful numerical results. The

next section develops the Domain Integral equivalent of Eq. (4.1) which is naturally suited
for finite element models.

X2

FIG. 4. l--Local J-integral in 3-D.

S

Xl

4.2.2 Domain Integral Formulation

By using a weight function, which may be interpreted as _ virtual displacement field, the
contour integral of Eq. (4.1) is converted into an area integral for two dimensions and into

a volume integral for three dimensions (Li, et al. [55], Nit:ishkov and Atluri [70]). The re-

sulting expressions are (see Fig. 4.2):

c

J--a-c = [J(s) qt(s)] ds = Jt + J-2 + J3 (4.4)

where each integral is defined by

f o(J1 = Pji Oui Oqk W-_kax, ozj
(4.5)

IVo (°2ui \
(4.6)

I (02Ui OU i C)Ui 02U i)J3 = - TomSk POt 2 oxkqk + P O-TOt-_.k qk dVo (4.7)
_Yo

Chapter 4 4.2-2 Domain Integrals

User'sGuidem WARP3D Background

qk denotes a component of the vector weight function in the k coordinate direction, qt(s)
represents the resultant value of the weight function at point s on the crack front, V o repre-
sents the volume of the domain surrounding the crack tip in the (undeformed) configuration

at t = 0, and s denotes positions along the crack front segment.

The vector function q is directed parallel to the direction of crack extension. When all

field quantities of the finite element solution are transformed to the local crack front coordi-

nate system at point s, and Mode I extension is considered, only the q I term of the weight
function is non-zero. In subsequent discussions, this transformation to the (local) crack

front coordinate system is assumed to hold; the k subscript on q terms is thus dropped with

q alone implying the q 1 term.

Body forces (other than inertial loading) are assumed to be zero for simplicity. The treat-
ment of crack face tractions involves an additional integral discussed subsequently. J(s) is

the local energy release rate that corresponds to the perturbation at s, qt(s). Figure 4.2

shows a typical domain volume defined for an internal segment along a three-dimensional
surface crack.

_ crack faces
A 3, A4

A2

X2

A3

A1

X3

FIG. 4.2--Finite volume for use in Domain Integral formulation

The q-function must vanish on the surfacesA1,A 2 andA 3 in Fig. 4.2 for the develop-
ment of Eqs. (4.5) through (4.7) from (4.4). This requirement makes area integrals (line in-

tegrals in two dimensions) defined on these surfaces vanish. Fig. 4.3 shows the variation

in amplitude of_ valid q-function for the domain shown in Fig. 4.2. All material over which
the q-function and its first derivative are non-zero must be included in the volume inte-

grals. The value ofq at each point in the volume, V 0, is readily interpreted as the virtual
displacement of a material point due to the virtual extension of the crack front, qt(s).

An approximate value of J(s b) is obtained by applying the mean-value theorem over the

interval Sa < s < Sc. The pointwise value of the J-integral at s b is given by (see Fig. 4.3):

Chapter 4 4.2-3 Domain Integrals

User'sGuide-- WARP3D Background ._

a

X2

q-function X 1

L

qt / c
X3

FIG. 4.3--Variation of weight function, q, over volume at crack front

CJ(s) qt(s) ds
J(s = b) = - J (4.8)

: Aq
qt(s) ds

where J is the energy released due to the crack-tip perturbation, qt(s). The increase in

crack-area corresponding to this perturbation, Aq, is simply the integral of qt(s) along the
crack front from Sa to sc.

For common through crack test specimens, e.g. SE(B), 2(T), the crack front is generally
straight or only slightly curved. For such crack geometnes, the average J for the entire

crack front value is obtained by the application of a uniform qt(s) across the full crack front.

The above volume integrals are evaluated by Gauss quadrature. Derivatives of the q-
function over each finite element in V are computed by standard isoparametric techniques

from specified values ofq at element nodes. The higher order derivatives are computed by

either: 1) extrapolating Gauss point values to the element nodes and applying standard iso-
parametric techniques or, 2) interpolating the Gauss poinl values to a lower order integra-
tion within the element.

4.2.3 Domain Form of the J-Integral: Discussion

Thermal Loading

The J2 integral vanishes for an elastic material (linear or nonlinear) in the absence of ther-
real strains as shown in the following manner (using sma 11displacement gradient theory

for simplicity). Begin by replacing the 1st PK stresses wi_,h the conventional (symmetric)

stress tensor applicable when strains and displacement gradients are small. Then

_2ui 02ui (4.9)
- Pji OXjOX1 = - (TijaXiOXl

w

Chapter 4 4.2-4 Domain Integrals

User'sGuide-- WARP3D Background

After exchanging the order of differentiation, inserting the (symmetric) small-strain tensor

and using symmetry of aij, the second term in Eq. (4.6) is rewritten as:

o u, o (oui oE,j (4.1o)
- oiJ oXjOX1 - aiJ_l _-_j / _- -- GiJ'_l 1

The chain rule is now evoked to expand the first term in Eq. (4.6), again assuming small-

displacement gradients. The derivative of strain energy density with respect to strain is the
stress tensor for elastic materials. The result is:

OW OW OeiJ c)EiJ

OZl = _Oeij OZ 1 - a iJ__l 1 (4.11)

The two terms defining the integrand of J-2 thus sum to zero for elastic materials when ther-
mal strains are absent.

Now consider the influence of initial strains caused imposed thermal loading, again us-

ing small strain theory for simplicity. Equation (4.10)remains unchanged; however, Eq.
(4.11) must be re-written more explicitly as

OxIOW_ Oee"JOWOeeiJoxl_ ai j OXlOee"J_ aij__110 (ei j - et.hI,j] (4.12)

where the total strain is now given by elastic (including nonlinear) and thermal components

such that eij= ee.. + et.h. Upon combining Eqs. (4.10) and (4.12), we have_j _j

f Vo °ethJ2 = aij__ 1 q dV o . (4.13)

To simplify numerial implementation, re-write the thermal strains as et.h.= aqO, where Oe
denotes the temperature change. The above expression becomes

J2 = ao'_. + q dVo " (4.14)

V0

which somewhat simplifies implementation in a finite element context since temperatures
are known at element nodes. Computation of the Cartesian temperature derivative follows

standard finite element procedures. Derivatives of the thermal expansion coefficients with

respect to the crack direction (X 1) must be obtained and this does complicate the computa-
tions. Also, the symmetric tensor of thermal expansion coefficients, a .., require transforma-
tion into crack front coordinates. For materials with constant thermal expansion coeffi-

cients within the domain of integration (V0), the above (kernel) expression simplifies

further to just qaaijOO/OX r

Dynamic Effects

Dynamic loading effects appear in the J-3 term of the domain integral representation of the

J-integral. The first term in J3 provides the flux of the kinetic energy in the direction of the

crack propagation. The second and third terms arise from the explicit partial derivative,

(0 []/OX1), of the kinetic energy density. The second term contains material accelerations
and the third term is identified with the spatial gradient of the velocities. The second term,

containing the material accelerations, has been found to make significant contributions to
the total J-integral for non-propagating cracks. This term is similar in form to domain inte-

grals that accommodate ordinary body forces.

Chapter 4 4.2-5 Domain Integrals

User'sGuide-- WARP3D Background .--

Incremental Plasticity Effects

For an elastic structure under static loading (without any thermal strains), J2 and j3 are
identically zero. For incremental (load path dependent) plasticity, the deviation of J2 from
zero indicates the degree of non-proportional loading experienced over the domain of inte-
gration.

For many practical cases, the loading produces nearly proportional material histories

within the domain of integration; in such cases the very small contribution of J2 is ne-
glected. Shih, Moran and Nakamura [81] neglected J2 for J-integral calculations. Vargas

and Dodds show that up to 15% of the J-integral in a 2-dimensional static case can be due
to J2 for incremental plasticity models when the plastic strains and the elastic strains with-

in the domain are similar in magnitude. For larger plastic strains, however, this difference

diminishes to less than 0.1%, which justifies the use of J2 + J3 as an approximation to Eq.

(4.4) for large amounts of plastic deformation. However, the contribution of J2 in the pres-
ence of thermal strain gradients within the integration domain can be essential to maintain

domain independence of computed J-values.

The derivation of Eqs. (4.4) through (4.7) is mathematically rigorous. Provided suffi-

cient resolution of the crack-tip stress-strain fields exists for accurate numerical integra-
tion, the calculated J-integral equals the weighted J(s), where J(s) is the contour definition

in the limit as the contour shrinks onto the crack tip. For a given qt(s), i.e., the crack front
variation of the weighting function, many combinations of domain volume and distribution

of the q-function are possible. Thus, similar to path independence arguments for the contour

J-integral, domain independence arguments apply for the domain J-integral. In practice,

several domains defined concentrically about the crack tip are evaluated to insure domain
independence of the computed J-integral. In the general case of thermal loading and inelas-

tic material response all three components of the J-integr_d are required for the calculated
value to be domain independent.

Summary

Numerical evaluation of the J1 integral requires only straightforward application of iso-
parametric element techniques once the computed field quantities are transformed from

the global X-Y-Z coordinate system to the X 1 - X 2 - X 3 (local crackfront) system at
point s on the front. In this simplified form, Eq. (4.5) beccmes

I 0(0u,q,q)J1 = Pji OX 10Xj WO-_I dV° " (4.15)

J2 makes a non-zero contribution in the WARP3D implementation only in the presence of

thermal strains (finite strain form with symmetric thermal expansion coefficients)

IVo o% lJ2 = oij aij-_Xl +-_lOJ q dV o . (4.16)

The kinetic energy and inertial loading terms from Eq. (4.7) become

I(f-_q" 02UiOUiOr20Xlq OuiO2ui_-_ v.v..]]J3 = - To2_1 P + P _t-5-_.qjdVo (4.17)
go

WARP3D domain integral processors evaluate only the first two terms of this integral. The

third term (velocity) is vanishing small unless high speed crack propagation takes place.

Chapter 4 4.2-6 Domain Integrals

User'sGuidem WARP3D Numerical Procedures

Aq may be interpreted as area of crack extension represented by a virtual crack extension

q. The value of Aq is defined by

$=C
Aq = q(s) ds (4.26)

$=a

which is numerically evaluated using Gauss quadrature as

p I P

where the functional form of q over the segment of crack front under consideration,
a < s < c, is specified by the user to vary in a piecewise linear, parabolic or cubic manner.

Lagrangian interpolating functions, Nl(s), are used to construct the piecewise functions for

q along the crack front. The length of crack front over a --- s -< c is computed with the ex-

pression

,-.=2 +]7"
p

and is displayed for checking purposes.

4.3.6 Output From Computations

The printed output displayed during Domain Integral computations is organized in a

hierarchial manner at the load step for the user specified domains. By default, only the re-

sults for each complete domain are printed; an option to print contributions for each ele-
ment is available. The values printed for each domain (or element in a domain) are labeled

DM1 through DM6 and correspond to the terms in Eqs. (4.15) through (4.18) as follows

DM,=-IV_o_W_---_ldV° (4.29)

Elements Added
To Make Ring 2

Initial Root Radius

o User-specified tip node

FIG. 4.4--Typical blunt-tip model employed in finite-strain analyses

Chapter 4 4.3-4 Domain Integrals

User'sGuide-- WARP3D Numerical Procedures _

Oui Oq
DM2 = Pji 0221OXj dV° (4.30)

J Ve(o)

V,(o)

]v_ 02ui OuiDM 4 = p Ot2 oxlq dV o (4.32)
o)

IA OUiDM 5 = - ti3-_.q dA o (4.33)
3 +A4

Iv, 0%]DM 6 = aij ao x + q dV o . (4.34)
(o)

The sum of these integrals over all elements of the domain is displayed followed by Aq, the
area under the q-function along the crack front. The J-integral value is printed as the sum

of the integrals divided by Aq. The units of J are F-L/L 2.

The average, maximum, and minimum J values are summarized in tabular form. Sepa-

rate sums are also printed for static and dynamic contributions.

Chapter 4 4.3-5 Domain Integrals

User'sGuidem WARP3D DI Commands

4.4 Commands for Domain Integrals

4.4.1 Outline of Process

Once the analysis completes for the list of load steps appearing in the current compute dis-

placements command, WARP command processors read the next data line. This can be an
output command, another compute command or a domain command (as well as a number
of other valid commands).

The domain command initiates the input sequence to specify information about a do-

main for computation of the J-integral. Following specification of a valid domain, the input

command compute domain integral invokes the domain integral processors to perform the

computations using analysis results for the most recent (current) load step analyzed.

To evaluate J over different domains using results for the current load step, simply re-

peat the domain ... compute domain integral sequence as often as desired. WARP stores
only the definition of the most recently defined domain. When J is evaluated using the same

domain definitions at many load steps, the *input from file command proves convenient to

eliminate repetition. The domain definitions and compute domain integral commands are
defined in a separate input file and simply referenced with the *input from file feature of
WARP.

At completion of domain integral computations, other commands may be given to com-

pute displacements for additional steps, request other output, alter solution parameters,
etc.

4.4.2 Input Error Correction

The processor of domain integral commands recovers easily from most syntax errors. Mes-

sages indicating the error are displayed and a new input line read; simply re-enter the cor-
rected form of the command. The new information overwrites previous values.

The input processor performs immediate checks for obvious errors in the specified data.
More extensive consistency checking of the domain definition occurs during the actual nu-

merical computations.

4.4.3 Components of a Domain Definition

Each domain for J computation consists of the following information:

1. The alphanumeric name (id) of the domain as specified in a domain command.

2. Components of a unit vector normal to the crack plane.

3. A symmetry flag, if applicable. J-values are then doubled prior to printing.

4. A list of nodes defining a portion of the crack front under consideration. Note that all ele-
ments along the crack front must be of the same type: 13disop or q3disop.

5. q-values at nodes along the portion of the crack front under consideration and over the de-
sired volume of domain integration. Two methods to specify nodal values ofq are available:
user-defined and automatic.

a. User defined--users specify actual nodal values for q and the list of elements over
which the domain integration is desired. A single J-value is printed.

b. Automaticmusers specify the number of concentric rings of elements enclosing the
tip over which J is evaluated at the crack front position. The q-values and lists of
elements are generated automatically by WARP domain processors. A J-value is
printed for each ring of elements requested.

Chapter 4 4.4-1 Domain Integrals

User'sGuidem WARP3D DI Commands

6. Printing options. By default the total DMi values are printed for the domain (each ring if
automatic); individual element contributions are not printed. Users may request printing
of individual element values as well.

7. Order of Gauss quadrature for element volume integrals. The default integration order is
that used for element stiffness computation. A one-point rule is an optional order.

8. Crack face loadings option. By default, contributions to J from elements with detectable
crack face loading are included. An option is available to neglect crack face loading con-
tributions. This option is needed for crack growth analyses in which the crack closing forces
are slowly relaxed to zero behind the extending front. These forces are interpreted by the
domain processors as equivalent loads for crack face loading.

9. Debug output options. Two levels of debugging information may be requested.

10. Verification of domain input. A "dump" option prints the definition of domain parameters
from internal storage.

4.4.4 Initiating a Domain Definition

The command to initiate a new domain has the form

domain < name: label >

where the domain name appears as a descriptor in printed output.

4.4.5 Crack Plane Orientation

The orientation of the local crack front system, X1-X2-X3, shown in Fig. 4.3 must be speci-

fied. The user defines components of a unit vector normal to the crack plane (X1-X 3) aligned
in the positive direction of X2. WARP then determines the direction of X3 using the list of

crack front nodes (the positive direction of X3 is in the direction from the first node to the

second node in the list). The direction X1 is found from the cross product X2®X3.

The command to define crack plane normals has the torm

normal (lap_!._) nn_zz < direction cosine: number

where nx, for example, defines the projection of the crack plane (unit) normal onto the glob-
al X axis. If the global Z axis is normal to the crack plane, for example, use the command

normal plane nz 1.0

The direction cosines provided in the command must define a vector of unit length
(nx 2 + ny 2 + nz 2 - 1).

When the J-values are negative but have the correct absolute value, reverse the sense

of the crack plane normal vector.

This combined procedure in which the user specifies _he X2 direction and the domain

processors use the front node list to compute directions for X1-X3 naturally fits the point-

wise computation of J along a curved crack front. Similarly, a thickness-average J-value

for a slightly curved or straight crack front in a through ,:rack configuration is easily ob-
tained with the automatic method of q specification. Not_, however, that the X3 direction
for the domain is defined by the first two nodes given in the front node list.

4.4.6 Symmetric Option

The symmetric option is provided as a convenience since :nany finite element models are

defined for symmetric geometries, loading and constraints When this keyword is specified,

Chapter 4 4.4-2 Domain Integrals

User'sGuidew WARP3D DI Commands

all J-values are double prior to printing. An output message signals when J-values are
doubled as well.

The command to request doubling of J-values for symmetry has the form

symmetric

4.4.7 Crack Front Nodes

Fronts Defined by Collapsed Elements

The command to define nodes on the crack front for the domain has the form

front (nodes) < integerlist > a3diso0

where the ordering of front nodes in the list must follow increasingX3. The type of elements

along the crack front (13disop or q3disop) must be specified to support error checking. When

q3disop elements are used along the crack front, the number of front nodes listed must al-

ways be an odd number (3, 5, 7, ...).

When the crack front is modeled with collapsed elements, there are multiple coincident

nodes at locations along the front. Only one of the coincident nodes should be specified at

these locations in this command. The remaining coincident nodes are located automatically
and included in subsequent processing. A list of the other nodes coincident with each front

node specified in this command is printed if the keyword verify appears as the last item of
the command.

To illustrate the use of this command, consider the curved crack front sketched in Fig.

4.5. Crack front elements are linear isoparametrics (13disop). Let node 10 lie on a symmetry

plane; node 22 lies on the outside (free) surface. To compute J at node 10 on the front, the
crack front segment in the domain includes nodes 10 and 14. The input command is

front nodes i0 14 13disop verify

To compute J at node 14, the crack front segment in the domain includes nodes 10, 14

and 18. The input command is

front nodes i0 14 18 13disop verify

Here, q varies linearly (piecewise) along the front between nodes 10, 14 and 18 (q will be
zero at 10 and 18 and > 0 at 14).

Fronts Defined With Initial Root Radius

The user first defines lists of"tip" nodes for each crack front position needed in the domain

using commands of the form

node set <set id:integer> < integerlist >

where the set id is simply a convenient identifier in the range of 1-30 for later reference.
If the mesh has 9 elements defined along the crack front, for example, 10 such lists of tip

nodes are usually defined. The first node appearing in the < integerlist > should be the ac-
tual front node on the symmetry plane, i.e., node 53 in Fig. 4.4. The correspondence be-

tween the set id and a specific crack front position is made explicit in the modified front
nodes command.

Chapter 4 4.4-3 Domain Integrals

User'sGuide-- WARP3D DI Commands _

The command to define nodes on the crack front for the domain has the form

front (node) sets < integerlist > a3disop

where the ordering of front node sets in the list must follow increasing X 3. The type of ele-
ments along the crack front (13disop or q3disop) must be specified to support error checking.

When q3disop elements are used along the crack front, the number of front sets listed must
always be an odd number (3, 5, 7, ...).

To illustrate the use of this command, consider again the curved crack front sketched

in Fig. 4.5. Crack front elements are linear isoparametrics (13disop). Let node set 1 lie on
a symmetry plane; node set 4 lies on the outside (free) surface. Let nodes 10, 14, 18 and 22

in the figure now denote the symmetry plane node at the blunt notch tip at each front posi-

tion (the same as node 53 in Fig. 4.4). To compute J at the front position identified by node
set 1, the crack front segment in the domain includes node sets 1 and 2. The input com-

mands are (define the needed sets of nodes first followed by the front command)

node set 1 i0 3 42 64

node set 2 14 43 29 31

node set 3 18 21 24 83

node set 4 22 41 39 44

• • .

front node sets 1 2 13disop

The definition of all front node sets is included above for illustration even though only sets
1 and 2 are referenced in the front node sets command.

To compute J at the front position 14, the crack front segment in the domain includes

node sets 1, 2 and 3. The input command is

front node sets 1 2 3 13disop

Here, q will vary linearly (piecewise) along the front between node sets 1, 2 and 3 (q will
be zero for nodes in set 1 and 3 and 1.0 for nodes in set 21.

4.4.8 Specification of q-Values

Two methods for defining the q-values are available: automatic and fully user-specified.
Each method is described in a section below• The automatic method will suffice for must

applications.

Automatic q Definition

The automatic method supports J computation for the fo]lowing situations:

1. Pointwise evaluation at a crack front location on a symmetry plane or on a free surface
(there are elements only to one side of the crack front _ocation).

2. Pointwise evaluation at an interior crack front location corresponding to a corner node (ele-
ments exists on both sides of the crack front location).

3. Average J-value for the complete crack front (straight or slightly curved fronts).

At a crack front location, the automatic method constr acts one or more domains for in-

vestigation of domain independence of computed J-values. The concept of a ring of elements

is adopted to describe the domains generated at a crack front location (see Fig. 4.6). Ring
1 contains those elements incident on the nodes defined in the list of front nodes or in the

referenced node sets. Figures 4.4, 4.5 illustrate the Ring I elements for initially blunt crack

Chapter 4 4.4-4 Domain Integrals

User's Guide m WARP3D DI Commands

_ 13disop elements

. _'_14 L._ ' 6 __ 22 \ Free Surface

_ .__,"f _2]/v_ _ _'-- Fr°_-N°de_ry

,., / A3Directi v _'lane
/ 10 _ X 3 Direction _, Y

/ 1'" g
Symmetry Plane Node Sets /

FIG. 4.5--Example crack front to illustrate front nodes specification.

tips and collapsed crack tips. Additional rings are constructed by examination of element
connectivities. Ring 2 contains the front elements plus the next ring of elements enclosing

the tip. Again, Figs. 4.4, 4.5 illustrate the additional elements for the two types of crack tips.

For the initially blunt-tip model, the user exercises full control over the elements included

in the rings by selection of the "seed" nodes specified in the node sets.

J-values for the first few rings usually have the greatest error (especially for the blunt-

tip models) and should be avoided if possible. J-values for rings 4,5, ... should be reasonably
similar. For a nonlinear elastic (deformation plasticity) model, the values in rings 4, 5, ...
often show less than 1% variation.

The command to specify automatic generation of q-values has the form

_l(-values) automatic (ri_Bgs) < integerlist >

and must be followed by the command

function (:]_/.p_.e_)

where a-d denotes the variation (function type) ofq along the crack front. The four function

types are illustrated in Fig. 4.7. Types a and c are used to evaluate J at end points of a crack

front, e.g., at nodes 10 and 22 in Fig. 4.5. Type b is used to evaluate J at an interior node,

e.g., nodes 14 and 18 in Fig. 4.5. Function type d is used to compute a "through-thickness"
average J for a straight or slightly curved crack front.

When q3disop elements are used along the crack front, the automatic method supports
J computation only at the element corner nodes. In this case, the automatic procedure to

Chapter 4 4.4-5 Domain Integrals

User'sGuiden WARP3D DI Commands _

construct q-values sets the mid-side node value to the average value of the adjacent two
corner node values (as illustrated in Fig. 4.7).

X2

Elements Added
to Define Ring 3

Z 1

Elements Added to Define Ring 2

Crack Front Elements Define Ring 1

FIG. 4.6--Concept of rings used in automati: domain generation.

For function types a-c, the automatic algorithms construct nodal values for q which vary

linearly in theX3 direction. For function type d, q maintains a constant value in theX3 direc-

tion along the front. Nodal values for q are generated automatically such that the following
conditions hold:

Ring 1: q derivatives: Oq/OXj = constant.

Ring i: for elements appearing in rings 1, 2, 3 i-1, the q derivatives: Oq/OX1 =0,
Oq/OX2 = 0 and Oq/OX3 _ O. For elements added to ring i-1 to define ring i, the q deriv-
atives are Oq/OXj = constant.

As a consequence of these q-derivative properties, element rings 1, 2, 3, ... i-1 have

DM 1= DM 3 = O. These elements make a small contribution to DM 2 since the variation of
u 3 with X 1 is non-singular. The acceleration forces which define DM 4 and the thermal

strains which define DM 6 make significant contributions iu near front rings since q, rather

than q-derivatives, appear in the integral. For function t)pe d, the terms DM1, DM 2 and
DM 3 = 0 for elements in rings 1, 2, 3, ... i-1.

The automatic generation process creates one additional domain for each ring re-
quested by the user. The J-value for each of these domains is printed and included in the

average, minimum: maximum statistics. If the element printing option is also on, the con-

tribution for each element to each domain is printed. The list of rings specified in the auto-

matic domain method can be of the form rings 2 4 6 10 15 While the domains for all rings
(through the maximum ring listed) are created internally, J is computed and printed only

for the ring numbers in the list. In this way, for example, the user may request computation
and output for a few rings far from the crack front, e.g., rings 10-15. The domain processors

Chapter 4 4.4-6 Domain Integrals

User'sGuidem WAR P3D Background

When crack face tractions are present, an additional contribution to the J-integral is

computed using

-- f A aUiJ4 = - ti-_l q dA o . (4.18)
3+A4

where t i denotes the face traction expressed in the front system and A 3 + A 4 denotes the
upper and lower portion of the loaded faces (refer to Fig. 4.2).

Eqs. (4.15) through (4.18) are implemented to support finite-strains and finite-rota-

tions as indicated. The present formulation applies most realistically to models in which

the displacement field leads to large (rigid) rotations on the domain but in which finite
strains are confined to the usual blunting zone ahead of the crack tip. An example is a pin

loaded, single-edge notch tension specimen, SE(T), containing a deep notch, i.e., a/W > 0.5.

Under increased loading, the specimen may undergo relatively large rotations as the line
of action of the axial load re-aligns with the center point of the remaining ligament. Finite

strains are confined to the near tip region. The present formulation includes the effects of

such large (rigid) rotations of the specimen on J-values.

Chapter 4 4.2-7 Domain Integrals

User'sGuide_ WARP3D Numerical Procedures --

4.3 Numerical Procedures

This section describes the numerical procedures implemented to evaluate the Domain Inte-

grals described previously. An understanding of these procedures is necessary for the cor-

rect use of the commands described subsequently.

4.3.1 Definition of the q-Function

Consistent with the isoparametric formulation, the q-function within an element has the
form

= _Ni(_,_l,_)qi (4.19)q(_,_],_)
i=l

where qi are the specified values of the q-function at the element nodes. The user defines:

(1) a list of nodes along the crack front included in the computations to evaluate Aq, (2) ele-
ments over which integrations are to be performed, (3) qi at nodes over the volume, V, and
(4) orientation of the crack front coordinate axes at the point s under consideration.

When collapsed elements are defined along the crack front producing coincident nodes,
only one of the coincident nodes at each location is specified; the computational routines

locate the remaining coincident nodes and assign them the same value of q.

When the crack front has a small, initial radius, the user specifies a list of nodes at each

crack front position to be treated as tip nodes. The computational routines then assign all
listed nodes at each front position the same value ofq. The specified lists of front nodes also

play a key role in the generation of automatic domains for initially blunt crack fronts.

To define the orientation of the crack front axes relative to the global axes, users specify
the components of a unit vector normal to the crack plane.

The specification of nodal q-values becomes exceedingly tedious for 3-D analyses. An

"automatic" procedure is available as an option for ger.eration of q-values. This procedure
requires that the user specify: front nodes along the crack front, the number of domains

required for checking path independence and components of the unit vector normal to the

crack plane. The domain processors create domains of increasing distance from the crack
tip using the mesh topology.

4.3.2 Volume Integrals

The volume integrals are numerically evaluated using the same Gaussian quadrature pro-
cedures adopted for element stiffness generation. The iategral in Eq. (4.15) presents no dif-

ficulties as both W and the stresses are available at the Gauss point locations and the q-

function derivative is readily computed from specified nodal values and Eq. (4.19). Gauss

quadrature applied to Eq. (4.15) yields the expression for numerical computations as

oq ou, ro mlJ1 = - _p W_ 1 - Pji _11 _-_.jp det [0-_mJ, wp (4.20)

where the summation extends over all Gauss quadrature points (p) and wp denotes the
Gauss weight values. The 1st PK stresses are computed from the unrotated Cauchy stres-
sess using the two step transformation

a = R • t • R T (4.21)

mmr

W

Chapter 4 4.3-1 Domain Integrals

User'sGuide_ WARP3D Numerical Procedures

P = IFI a. F -T (4.22)

Cartesian derivatives of q and the displacements are obtained in the usual manner using
the chain rule

_ 3 0NlOtlr_aq - oxlVql (4.23)
OX1 I m

and,

,_,3 aNz at/maui - z-" OX1VO_Im_u d (4.24)
3X1 I m

where N is the number of element nodes. Similar procedures are followed for evaluation of

the first two terms of Eq. (4.17); the third term in this equation is neglected.

To evaluate the J2 integral, standard isoparametric procedures readily support com-

putation of the first term which involves O0/OX 1, since temperatures are known at the
nodes of elements. The second term requires evaluation of spatial derivatives of the ther-

mal expansion coefficients, Oaii/OX 1. Thermal expansion coefficients are specified for mate-
rials and materials are associ'ated with lists of finite elements in the WARP3D input. To

compute the required derivatives, nodal values for aij are constructed by averaging values
from elements incident on the nodes. Only elements with non-zero expansion coefficients

are included in the averaging process. Standard isoparametric techniques then yield

OaiffOX 1 at Gauss integration points within elements. The Oaij/.OZ 1 term maintains do-
mmn independence of the J-values when the thermal expansion coefficient(s) are not

constant within the integration domain.

4.3.3 Crack Face Traction Integral

The crack face traction integral, Eq. (4.18), is evaluated using nodal forces applied to crack
face nodes. These include the "equivalent" nodal forces computed bythe code from user-spe-

cified face pressures and any forces applied directly by the user to crack face nodes. The

crack face integral is thus evaluated numerically using the expression

IA c)U i =E E {ou,/ox,};{P,}, (425)
3 +A4 k l

where k is taken over elements with non-zero crack face tractions; l is taken over all element

nodes on the loaded face; {P} is the vector of total nodal forces at acting element node l (forces
derived from applied face pressures and all user applied nodal forces on the face nodes). Dis-

placement derivatives at the element nodes needed in Eq. (4.25) are obtained by extrapo-

lating derivatives computed at Gauss point locations. Lagrangian polynomials are again
adopted for the extrapolation. Not only is this technique more accurate than evaluating de-

rivatives directly at the element nodes, the difficulty in computing derivatives at nodes on
the crack front due to the singularity is avoided (extrapolated derivatives are not singular).
Numerical tests demonstrate that the approximate expression given in Eq. (4.25) works

very well.

The computational routines that evaluate Eq. (4.25) determine which element faces are

loaded by examining the nodal forces for the complete element. If an element force vector
indicates that more than one face is loaded, the lowest numbered element face is processed

and a warning message is issued to the user. Because this procedure was adopted (thereby

Chapter 4 4.3-2 Domain Integrals

User'sGuide_ WARP3D Numedcal Procedures

eliminating the need to respecify crack face loads during J computation), crack face loads
and thermal loads should not be specified in the same loading conditionmthe computation-

al routines will mistake the equivalent nodal forces due to the thermal loading for crack face

loading.

If all nodes of an element have non-zero applied forces, a body force load is assumed to

exist and no domain integral contributions are computed.

For user specified domains (not the automatic domains), the list of elements to process

must include all elements with crack face loading if any node on the face has a non-zero q

value. The automatic domain procedure performs this task.

When the effects of crack face loading are specified by the user through directly applied

nodal forces (rather than using the built-in face pressure loading), nodal forces must be spe-
cified on all nodes of an element face, including those that have constraints in the direction

of the face loading. If omitted, the logic to determine which element face is loaded does not

function properly.

4.3.4 Crack Front Nodes

Fronts Defined by Collapsed Elements

The use of degenerated brick-type elements generally leads to meshes with multiple, coin-

cident nodes along the crack front. To simplify specification of the q-function over the do-

main volume, the q-value for only one of the coincident nodes at such crack front positions
is required. The remaining coincident nodes at corresponding crack front positions are lo-

cated and assigned the same value for q. The procedure followed to locate coincident nodes
is outlined below.

For each user specified node along the crack front, the numerical procedure constructs

coordinates for a cubical prism centered at the node, then locates all other nodes of the mod-
el that lie within the prism. Such nodes are treated as coincident with the specified node

and are assigned the same q-value. Dimensions for the Cubical prism are defined as follows:

for 2 or more nodes specified along the crack front (3-D models), the prism ex-
tends ± R × tol about the node, where R is the distance between the first two listed nodes
on the crack front.

The value 0.001 is currently specified for tol. While this value has proven adequate for

most crack front meshes, models with exceptionally large element lengths along the front

may require a smaller value for tol (at present this requires a change in the source code).

Fronts Defined With Initial Root Radius

For analyses that require a formulation including finite-strain effects, crack fronts are gen-
erally modeled with a small, initial radius as illustrated in Fig. 4.4. For these models, the

automatic procedure described above to define a set of"tip" nodes becomes inadequate. Us-

ers are required to specify the appropriate list of"tip" trades at each front position, e.g., the
nodes indicated by open symbols in the figure. Each nede is then assigned the same q-value

by the computational routines.

Only the node actually on the symmetry plane (53 in the figure) is required unless the

automatic domain option is invoked. The list of user-specifed tip nodes provides the "seed"
to start the automatic procedure for domain generatic n, i.e., elements in the first domain

are those incident on the listed "tip" nodes.

4.3.5 Computation of Aq

The area under the q-function along the crack front, denoted Aq, is required to normalize
J for arbitrary magnitudes of the specified q-function in Eq. (4.8), see also Fig.4.3. Thus,

Chapter 4 4.3-3 Domain Integrals

w

User's Guide m WARP3D DI Commands

V v V v w

 ym et ,ane
v

outside

I

_ .L
: v _r

urface /

@Function Type 'a'

q-Function Type 'b'

dL
W

X2.X

o "_ c " _'c' q-Function Type 'c'

"I" w T v ,_

I

I

,I I

!cic',-'c' _ c [q-FunctionType'd'

Note: open circles indicate mid-side nodes that appear in a
crack front modeled with q3disop elements

FIG. 4.7--Types of q-functions available for automatic domain generation.

include the contributions of all elements in rings nearer the tip as required for each term

of J, e.g., crack face loading and inertia terms which involve q and not q-derivatives.

Consider the following example of automatic domain generation (refer to Fig. 4.5). Let

the crack plane be normal to the global Z-axis.

domain symm_corner

normal plane nz 1.0

front nodes i0 14 linear verify

q-values automatic rings 2-4

function type a

compute domain integral

Chapter 4 4.4-7 Domain Integrals

User'sGuide-- WARP3D DI Commands _

Function type a is specified since node 10 is on the symmetry plane. Automatic domains

are constructed for rings 1-4 but J is computed and printed only for rings 2-4 to omit ring
1 which usually has the most error.

To compute J at the front location of node 14 and 18, the following automatic domains

and compute commands are used

domain front_14

normal plane nz i. 0

front nodes i0 14 18 13disop verify

q-values automatic rings 2-4

function type b

compute domain integral

domain front_18

normal plane nz 1.0

front nodes 14 18 22 13disop verify

q-values automatic rings 2-4

function type b

compute domain integral

At the intersection of the crack front with the outside free surface (at node 22), the fol-

lowing domain is spedfied

domain outside_22

normal plane nz 1.0

front nodes 18 22 13disop verify

q-values automatic rings 2-4

function type c

m

m

mmm

compute domain integral

For a crack with the front curvature indicated in Fig. 3.5, a thickness-average J using

function type d would seem to be of questionable value.

User Specified q-Values and Elements

All nodal values of q are zero by default. Non-zero nodal values of q over the domain are
defined with the command

_l(-values) < node list > < q: real >

where the nodal q-values must be of class <real> to be di:_tinguished from the list of node
numbers. This command may be repeated as needed to dc fine all nodal values for q in the

domain, q-values must be specified for all element cornez nodes in the domain and for all

nodes along the crack front segment under consideration. Computational routines for
quadratic elements employ a linear variation ofq between corner nodes (they override the

specified mid-side node values including those along the crack front).

The list of all elements to be included in the computations is defined with the command

elements <integerlist>

Chapter 4 4.4-8 Domain Integrals

User'sGuide-- WARP3D DI Commands

Elements that should be included are: (1) those over which q is not constant, (2) those with

loaded crack faces and non-zero q-values, (3) those with inertia forces and non-zero q-val-

ues, (3) those with thermal loading and non-zero q-values.

The following example illustrates the definition of a domain to compute J at node 14

for the crack front illustrated in Fig. 4.5.

domain outside

normal plane nz 1.0

front nodes I0 14 18

q-values i0 18 0.0

q-values 14 1.0

elements 10-14

13disop verify

compute domain integral

In this example, only the crack front elements incident on node 18 make contributions to

J (this is not recommended!), q-values at nodes 10 and 18 default to 0.0 and can be omitted
from the above commands (they are included for readability). The normal plane and front

node specifications are identical to automatic domains. Only elements appearing in the spe-

cified list are evaluated during J computations.

4.4.9 Printing Options

By default, the total contributions (DM1,DM 2 ...) and the sum of DM1,DM 2 ... are printed
for the domain (each ring of an automatic domain). The domain values are followed by the
minimum J, maximum J and average J for the domains. When inertia effects are pres-

ent,DM3,DM 4 _ O, separate totals for static and dynamic terms are provided to make ob-
vious the relative importance of these terms in the total J-value.

To explicitly request this level of output, use the command

rp_ to_ s

More detailed output listing the contribution from each element is requested with the com-
mand

print element (values)

This option also provides the information of the print totals default.

4.4.10 Integration Order

The volume integrals contributing to J are evaluated using the same order of Gauss in-

tegration as is used for stiffness computation. For 13disop elements, J-values with a greater
level of domain independence are often obtained by using one-point Gauss integration. This

option is requested with the command

use 1 (Op___ rule)

4.4.11 Face Loading

By default, crack face loadings if present are included in the domain integral computations.

The crack face loadings may be omitted with the command

Chapter 4 4.4-9 Domain Integrals

User'sGuide_ WARP3D DI Commands

i.gB.Qre(crack) (fac.___ee)loading

As noted previously, this option should be invoked when crack growth is modeled by releas-

ing the closing forces to zero over a number of load steps. Such forces are mistakenly inter-

preted as crack face tractions by the domain integral processors.

4.4.12 Domain Verification

The definition of a domain as stored in internal tables may be printed with the command

dump. This command may be given at any time during the domain definition and as many
times as desired.

4.4.13 Debugging Domain Computations

The actual domain computations may be traced with printed output detailing each step of

the computations. This may prove convenient to more closely examine J-values. To trace

the primary domain integral processor (but not element integration routines), use the com-
mand

_ driver

To debug element integration routines, use the command

debug elements

Both commands may be specified in the domain definitiolt.

4.4.14 Complete Examples

The following are two complete examples illustra_ng all commands for domain definition
using automatic procedures.

domain symm_corner

symmetry

normal plane nz 1.0

front nodes i0 14 13disop verify

q-values automatic rings 2-10

function type a

print totals

print element values

use 1 point rule

ignore crack face loading

debug driver

debug elements

dump

compute domain integral

domain free_edge

symmetry

normal plane nz 1.0

node set 1 32 54 90 31 63

node set 2 87 43 21 76 34

front node sets 1 2 13disop

q-values automatic rings 2-10

function type c

print totals

Chapter 4 4.4-10 Domain Integrals

User'sGuide_ WARP3D DI Commands

print element values

use 1 point rule

ignore crack face loading

debug driver

debug elements

dump

compute domain integral

Chapter 4 4.4-11 Domain Integrals

Chapter 5

Crack Growth Procedures

5.1 Introduction

Two procedures are provided to include the effects of discrete crack extension in WARP3D.

In the first type of crack growth, termed element_extinction, complete elements in the model

are deleted when a critical condition (damage) is reached under increased loading. The ele-

ment stiffness is set to zero and the forces exerted by the element on adjacent nodes are

relaxed to zero over a user-specified number of load steps or using a traction-separation
model. In this procedure the element is not topologically deleted from the mode] but it no

longer contributes any resistance to loading. In other codes, this techmque of element ex-

tinction is often referred to as an element "death" option.

In the second type of crack growth, termed node_release, an increment of crack exten-

sion on a symmetry plane is achieved by the traditional node release procedure. When

conditions for growth are achieved, the displacement constraint holding the crack closed
at that point on the front is replaced by the corresponding reaction force, which is then re-

laxed to zero. The force release process occurs over a user-specified number of steps or using

a traction-separation model. The element remains in the model and most oi_en undergoes
inelastic unloading and then re-yielding as the crack tip continues to extend. The node re-

lease procedures support growth along multiple crack fronts on the symmetry plane and
readily model non-uniform growth along the front, e.g. tunneling. Currently, the conditions

for growth are specified by a critical crack-tip opening angle (CTOA). The growth processor

examines each possible CTOA value using element edges incident on an active front node
and grows the crack when any of those angles exceeds the specified critical value. The user

can also request crack extensions during the analysis irrespective of the crack growth crite-
rion.

At the present time, only the 13disop elements are supported for crack growth using the

node release procedures. Other element types may be _sed to construct the finite element
model but only 13disop elements may be involved in the crack growth processing.

All available element types can be processed in crack growth analyses using the ele-

ment extinction procedures.

This chapter describes commands to invoke each of the two crack growth procedures
and additional details of their implementation in WAl_P3D.

Chapter 5 5.1-1 Crack Growth

User'sGuidem WARP3D Element Extinction

5.2 Crack Growth by Element Extinction

Elements are effectively deleted from the solution when a user-specified level of damage

develops under increased loading. During subsequent load steps, the element stiffness is
taken as zero and the nodal forces exerted by the element on adjacent nodes are relaxed

to zero over: 1) a user-specified number of load steps or 2) a simple linear, traction-separa-

tion model. The presently available measures of damage include: (1) attainment of a critical

void fraction, f, in elements which have the Gurson-Tvergaard dilatant plasticity material

model (type gurson), and (2) attainment of a critical plastic strain defined by the stress-mo-
dified critical model in elements which have the raises (J2) plasticity material model (type

raises).

The user actions required to invoke the element extinction option during an analysis

are:

• specify the logical property killable in the definition of a material that invokes the gurson
or mises material model (in the same analysis, there can be other materials using the
gurson and mises model that do not have the killable property).

• following the procedures for other nonlinear analyses, define the finite element model,
loading, constraints and nonlinear solution parameters.

• use the commands described subsequently in this section to define parameters controlling
the crack growth procedures (critical porosity, critical plastic strain, number of release
steps, printing options, etc.). These parameters are specified in a manner analogous to
specification of the nonlinear solution parameters; some crack growth parameters may be
altered during the analysis as noted in the command descriptions that follow.

• use various combinations of compute and output commands to control the nonlinear solu-
tion over load steps. The crack growth procedures are automatically invoked by solution
management routines in WARP3D.

• the analysis restart features of WARP3D fully support crack growth modeling. Restart files
contain the values of growth parameters and the solution state required to continue an
analysis with crack growth.

5.2.1 Damage Criteria

Gurson- Tvergaard Model (GT)

For this damage model, element extinction takes place when the current void fraction, f,

reaches a user-specified critical value, ft. The present implementation of the GT model lim-
its the "failure" condition to a triaxiality independent, critical void fraction. Typical values

of fc for structural and pressure vessel steels are 0.1-0.25, compared to initial void fractions,

f0, of 0.0005-0.005. The current value of f for this comparison is obtained from the simple
average of the element Gauss point values.

Stress-Modified Critical Strain (SMCS)

For this damage model, element extinction takes place when the equivalent plastic strain,

_-p, reaches a critical value computed with the SMCS criterion, i.e.,

= a exp - fl-_-e

where a and fl are user-specified, material dependent constants; ar_ denotes the mean
stress and ae denotes the Mises equivalent stress. Most often fl is taken equal to 1.5 in ac-

cord with the continuum hole growth model of Rice and Tracey [76]. Mackenzie, et al. [56]
and Hancock and Cowling [32] proposed the above form of the SMCS model based on exper-

imental studies of notched tensile specimens (steel). Panontin and Shepard [71] describe

Chapter 5 5.2-1 Crack Growth

ElementExtinction User'sGuideD WARP3D

a complete study of the calibration process to estimate a and fl from notched-tensile data

for an A516 pressure vessel steel and an HY 80 steel. Their work focuses on applying the

SMCS model to estimate geometry effects on JIc. For their A516 material, they found
a = 1.996 and fl = 1.5, and for HY 80 they found a = 3.865 and fl = 1.5.

The values of am, ae, and _-pused to evaluate Eq. (5.l) are obtained from the simple
average of the element Gauss point values.

5.2.2 General Input Commands

The sequence of commands to initiate the definition of crack growth parameters is

crack (r_h) (parameters)

l non_
(of) (cr._aack)(grgrgrgrgrgrgrgrgrg_h)(elementextinction) urg_u.LS._

(.element_extinction) smcs

where none turns off subsequent element extinction during the analysis. Once elements

have been made extinct in an analysis and the option none is given, further crack growth
cannot then be re-invoked. To temporarily suppress further growth, the simplest (and rec-

ommended) procedure is to modify critical values of the damage criteria.

The keywordgurson invokes element extinction based on attainment of a critical poros-
ity, f, in killable elements associated with the GT material model. The keyword smcs in-

vokes element extinction based on attainment of a critical plastic strain, gp, in killable ele-
ments associated with the raises material model. Note: only one type of damage criterion

may be specified in an analysis and it cannot be changed to another criterion during the

analysis.

When the element damage first exceeds the specified limit, the element "internal" forces

are imposed on adjacent nodes in the model as nodal forces. The values of these forces de-
crease linearly to zero over 1) a number of sequential load steps or 2) a linear traction-sepa-

ration model. The element stiffness is immediately set to zero and remains zero for all sub-

sequent load steps. Input commands to describe the force release models are described in
a subsection below.

The element extinction procedures provide a convenient printing option to simplify in-
terpretation of the growth process. The command has the form

(status) t off t (order (elements)< element list: integerlist >)
(on)

where the keyword on or off is required. An optional list of elements previously marked kill-

able may be specified for processing. If no list is given, all elements having agurson or raises
material model with the killable property are included in the list (in ascending numerical

order). When the optional list is given, information is print ed for elements in the order spe-
cified in the list.

At the beginning of each load step when this printing option is on, a tabular summary

of the current status is printed for each element in the list. For the gurson damage criterion,

the following values are provided: initial porosity (f0), current (average) porosity (f), aver-
age plastic strain in the matrix material (e-p) and average (Mises) equivalent stress in the

Chapter 5 5.2-2 Crack Growth

User'sGuideD WARP3D Element Extinction

matrix material (&). For the smcs damage criterion, the following values are provided: the

average plastic strain in the element (@), the current value of critical plastic strain defined

by the smcs criterion (_), average mean stress in the element (am) and the average (Mises)
equivalent stress in the element (ae). Additionally, if automatic load reduction is enabled
(see section 5.2.4), the table includes the increase in the current growth parameter over the

last step; if the gurson damage criterion is used, the increase in average porosity is printed,
while the increase in average plastic strain in the element is output if the smcs criterion

is specified.

To prevent excessive amounts of output, information is printed only for those elements

with f > fo (gurson model) or _p > 0 (mises model).

By default, every element eligible to be made extinct is processed without regard to any

specific topological order. In some cases, it may be desirable to force extinction of elements
in prescribed topological order. To specify this feature, use the command

se_.e_quential(extinction) t off t (order< element list: integerlist >)
(on)

where the use of this feature is invoked/suppressed with the required on/offkeyword. The

optional list provides the topological sequencing of elements to be made extinct. For exam-
pie, if the second element in the list reaches the critical damage parameter prior to the first
element in the list, then both the first and second elements in the list are made extinct si-
multaneously. When the list is omitted, the topological ordering is taken to be ascending
numerical sequence by element number for all elements in the model with the killable ma-

terial property.

5.2.3 Damage Criteria Commands

For the gurson damage criterion, the porosity value at which element extinction occurs,fc,

is specified by the command

critical (op__0E_gsity)< porosity limit: value >

The average porosity at the Gauss points for each killable element with agurson material

model is compared with the specified critical value at the beginning of each load step. When
the average value first exceeds the porosity limit, the element extinction process begins for
that element. The default value for critical porosity is 0.20.

For the smcs damage criterion, the user specifies values for the material dependent pa-
rameters, a and fl, with commands of the form

al_lp_b3_< value >

beta < value >

The current plastic strain is compared to the computed critical plastic strain for each kill-
able element with a mises material model at the beginning of each load step. The compari-

son is made using single point values obtained from the average of Gauss point values.

When the average value first exceeds the critical strain, the element extinction process be-

gins for that element. Default values are: a = 1.0 and fl = 1.5.

5.2.4 Automatic Load Reduction

When load steps are too large, element extinction may occur too rapidly, which allows the

force release process to affect adversely the stress-strain history of material ahead of the

Chapter 5 5.2-3 Crack Growth

ElementExtinction User'sGuidem WARP3D _

crack front. The history effects may cause difficulties in Newton convergence of the global

solution, or may cause J-Aa curves to be too high, too lo_-, or to oscillate. To alleviate this

problem, WARP3D provides a feature to reduce automatically the load step size based on

the change within a load step of the appropriate crack growth parameter. The reduction
algorithm operates as follows: consider a kiUable element on the crack plane. If the parame-

ter used as the growth criterion increases more than a user-specified amount in a single

load step, the growth processor sets a permanent 50% reduction on all future load step

sizes. This 50% reduction repeats as needed in subsequent steps until the maximum incre-
ment of growth parameter is not exceeded within a load step.

For the gurson damage criterion, the reduction mechanism triggers when the porosity

growth during a step, Af, is larger than a specified percentage of the critical porosity
(Af >afc). For the smcs model, a user-specified increment of plastic strain within a step

provides the criterion for load reduction (Ae-p > A@ .t). Use of a load reduction parameter
• Cr_ . .

which is too stringent forces the load steps to become unnecessarily small, while the use

of a lenient reduction parameter may not completely eliminate history effects; trial and er-
ror is required to determine proper values. To assist in choosing reduction values, WARP3D

prints the change in the growth parameter after each step for all killable elements if the

print status flag is set to on. Note that appropriate reduction values may be dissimilar be-
tween analyses with different geometries, loadings, or material characteristics.

The command to request automatic load reduction for the gurson criterion is:

automatic (load) (reduction) l o_ffnffI [(maximum) op_qLo_sity(ha_q_h._.ge)<real>]

where <real> denotes the maximum allowable change in porosity between load steps ex-

pressed as a percentage of the critical porosity. By default, the maximum porosity change

is 10% (0.1 as the input value above) and the load reduction algorithm is off; typical values
are 0.05 - 0.1.

The command to request automatic load reduction for the smcs criterion is:

automatic (load)(reduction)l off 1on [(,maximum) (Ip.L_tic) strain (_) <real>]

where <real> denotes the maximum allowable increase of the average plastic strain in the

element (_) within a load step. Note: this is a specific strain increment, not a percentage
as for the gurson criterion. By default, the maximum increase in plastic strain is 0.01 and

the load reduction algorithm is off.

5.2.5 Extinction Algorithm

At the beginning of each load step n (n>l), and each adaptive sub-step, the average value

of the damage parameter is computed for each killable elelaent in the model. When the ele-

ment conditions are such to require extinction (achieved the critical value of the damage
parameter or the sequential ordering feature dictates extinction even when the critical

damage value is not yet attained), the following actions are taken:

• Young's modulus and Poisson's ratio for the element are set to zero. The element history
data is deleted (porosity, plastic strain, stresses, etc.).

Chapter 5 5.2-4 Crack Growth

User'sGuide-- WARP3D Element Extinction

• Element contributions to the global internal force vector are applied as nodal forces. All
subsequent contributions of the element to global equilibrium are zero. The element inter-
hal force vector when extinction begins is gradually decreased in a linear fashion over sub-
sequent load steps. Because the element forces are converted into nodal forces and treated
thereafter as ordinary (user-specified) forces, the adaptive step algorithm is unaffected by
crack growth and often proves essential for obtaining converged solutions following a
growth increment.

• All subsequent computations for the element stiffness (linear or tangent) resolve to a zero
matrix.

• When all elements connected to a node are made extinct, the node has no stiffness and

introduces a singularity into subsequent equation solving efforts. To prevent this, the ele-
ment extinction procedures track the number of elements attached to model nodes at any
time and automatically supply new constraints on "free" nodes to eliminate the singularity.

• The blocking requirements dictate that all elements in a block must be killable. When a
new element is made extinct in a block, checks are made to determine if all elements in the
block have been made extinct; computations on such blocks may be completely skipped in
subsequent load step solutions.

• The crack growth processor modifies the nonlinear solution parameters as follows: (a) a
linear stiffness matrix is requested for the first iteration of the upcoming load step, (b) the
displacement extrapolation flag is turned off permanently. Such use of the linear stiffness
matrix for the structure properly accounts for elastic unloading that generally occurs im-
mediately following a node release. These modifications in the nonlinear solution proce-
dure are found necessary to maintain high rates of convergence.

5.2.6 Release Models for Element Forces

The simplest procedure to relax internal nodal forces for a newly extinct element employs
a fixed number of load steps. The commands to specify this option are

force (release) (t_.yp__e)t_._!_e_p_s

release (st_!9_fis)< integer >

This force release model is the default option and can be used to render extinct any element

m the model, whether or not it lies on the crack plane. The default value is 5 steps. The num-

ber of release steps cannot be altered once any elements have been made extinct. A com-

plete example of crack growth input using this force release procedure is:

crack growth parameters

type of growth element_extinction gurson

force release type steps

release steps i0

critical porosity 0.25

print status on order 20-80 by 2

sequential extinction on order 20-80 by 2

While the above procedure is simple, computed solutions often exhibit an undue depen-
dence on the number of load steps employed in the analysis. When large load steps are de-

fined, for example, the above procedure (with release steps > 1) artificially restrains open-

ing of the crack faces. In analyses with very small load steps, the element internal forces

may be reduced to zero too quickly.

To place the force release process on a more physical basis, a linear traction-separation
model is provided. Figure 5.1 illustrates this model using a 2-D schematic. In Fig. 5.1 (a),
let D denote the undeformed height normal to the crack plane of a typical "cell" element

(such elements are often square or nearly so). When this element reaches the critical poros-

Chapter 5 5.2-5 Crack Growth

ElementExtinction User'sGuidem WARP3D

\1

Normal to Crack I I I "ll_-......_,, I I

; --., ,
a) Undeformed Mesh Showing

Initial Cell Height, D
b) Deformed Mesh at Critical

Value Damage and Height Do

7
7 = fraction of extinct element
forces remaining on nodes
after critical damage attained

I "-"D
I "" II

o, o _ D-Do

c) Subsequently Deformed Mesh d) Linear Traction- Separation

and Height D Model

FIG. 5.1--Traction-Separation Model for Release of Extinct Element Forces

ity, the average deformed height normal to the crack plane is denoted Do, as indicated in
Fig. 5.1 (b). This value is computed using the average displacement normal to the crack

plane of the four nodes on the "top" face of the element. During subsequent load steps, the

newly extinct element continues to elongate normal to the crack plane, with the average
deformed height denoted D, as shown in Fig. 5.1 (c). The Laternal forces present in the ele-

ment at extinction are reduced to zero in a linear fashion with subsequent increases in

D > D 0. At any load step after attaining the critical damage state, the remaining fraction
of internal forces applied to nodes of the extinct element, 7, is given by

D-D 0
7 = 1.0 21) (0 -< 7 < 1) (5.2)

where a typical value for the release factor, 2, is 0.1.

5.2-6 Crack GrowthChapter 5

User'sGuidem WARP3D Element Extinction

Input commands to specify the traction-separation model are thus:

force (release) (t_.y_p_3)traction(-se=___p__ation)

release (fraction) < _. factor:number>

crack (_) normal coordinate <number>

cell heig.b! < D dimension:number>

To support general element meshing, the normal direction to the crack plane may be any
one of the coordinate axes and the position of the crack plane may be non-zero. Default val-

ues are not supplied for the crack plane normal direction or cell height; users must explicitly

define values for these parameters. The default value of _ is 0.1. A complete example of

crack growth input using the traction-separation model is:

crack growth parameters

type of growth element_extinction smcs

release type traction-separation

cell height 0.004

crack plane normal y coordinate 0.0

release fraction 0.2

alpha 0.95

beta 1.5

print status on order 20-80 by 2

sequential extinction on order 20-80 by 2

5.2.7 Meshing Restrictions

The automatic procedures implemented to render elements extinct impose restrictions on

the element mesh layout along the initial crack front and along the roots of side-grooves.

Figure 5.2 illustrates the recommended mesh design in a plane normal to a general 3-D
crack front. Crack extension occurs in the Xc direction on this figure; Zc is tangent to the
crack front. It is essential that no other elements connect to the "front nodes" except the

those along the front indicated by the letter A. A traditional "focused" mesh at the initial

crack tip can be used only if a small keyhole remains so that the topological requirement
shown in the figure remains satisfied. If needed for convenience in mesh construction, ele-
ments on the initial crack face (Yc = 0) below B shown on the figure can be included in the

model. Such an arrangement defines a one-element, square keyhole at the initial tip.

A similar topological requirement must be satisfied at the roots of side grooves. The fig-
ure shows a "square" shape for the root of the side-groove with the "radius" of the root given

by the Yc dimension of elements A. No other elements except those indicated by A can be
connected to the indicated nodes along the side-groove root.

Both the crack front and side-groove root restrictions on mesh topology arise from the

connectivity counting used in the extinction algorithm. Consider the crack front elements
A shown in the top figure. The crack growth processor maintains a count of the number of
elements connected to each node of the model. As the A elements are made extinct, the

number of elements connected to the nodes are decremented. When the "count" for a node

reaches zero, the crack growth processor inserts new displacement constraints into the da-

Chapter 5 5.2-7 Crack Growth

ElementExtinction User'sGuideD WARP3D

tabase which fully constrain subsequent movement of the node; when the count reaches
zero, there are no elements with remaining stiffness attached to the node and a singular

solution would otherwise result. If regular elements (no damage allowed) are defined to the
left of A in the top figure, the count for the front nodes never reaches zero, and those ele-

ments suppress opening of the tip.

xo !r-

"z/_'l " _ IB
General Curved// /
Crack Front / ' ,-

A_ go! Crack Front Nodes_ A

I
I

Yc

Zc

Initial Crack Length___ Direction of Crack Growth

a) Recommended Mesh in Plane Normal to Crack Front

f--

(

\

// ,i

X_ Zo

--.\
1/2 of
Included SG
Angle

• _ Modelled 1/2 Width

A j_ of SG Root

Nodes Along Root
of SG

b) Recommended Mesh at Root of Side-Grooves

FIG. 5.2--Topological Restrictions on Meshes for Element Extinction

Chapter 5 5.2-8 Crack Growth

User'sGuide_ WARP3D Node Release

5.3 Crack Growth by Node Release

In crack growth by node release, WARP3D releases constraints applied to nodes on the
crack front after a user-specified level of deformation, thereby creating new, traction-free

crack surfaces. The presently available measure of deformation is the opening angle of the
crack at each crack front node (CTOA). During subsequent, user-specified load steps, the

forces previously exerted by the constraints normal to the crack plane (reactions) relax to

zero over a user-specified number of load steps, or through simple, linear traction-separa-
tion law.

Strategies for node release generally follow one of two approaches: (1) the user-specified
external loads and displacement boundary conditions remain fixed while additional load

steps relax the reaction forces to zero on newly unconstrained nodes, or (2) the external

loads and displacement boundary conditions continue to change according to the user-spe-
cified values during subsequent load steps concurrent with the relaxation of reaction forces

on newly unconstrained crack front nodes. WARP3D adopts the second strategy for two rea-
sons: (1) it more closely models the physical process of crack growth thereby minimizing the

effects of artificial elastic unloading of the material, and (2) the computation time is dra-

matically reduced by eliminating the additional "release" steps. Numerical studies reveal

negligible differences in solutions with the two strategies.

The node release procedures permit very general, non-uniform (Mode I) growth along

initially straight or curved crack fronts located in plates, pipes, pressure vessels, etc. Multi-
ple, initial crack fronts may exist and are detected automatically by the crack growth proc-

essors. Crack fronts may grow to coalesce thereby merging two or more smaller cracks into

a larger crack.

The crack growth processors also provide the option to enforce uniform growth along

a crack front. The user specifies a "master" node on each initial front; the CTOA at the ini-

tial and subsequent master nodes governs when that entire front advances. Again, multi-

ple initial crack fronts may exist and they may grow to coalesce thereby merging smaller
cracks into fewer, larger cracks. This capability enables strong 3-D effects to influence the
evolution of CTOA with loading while maintaining a simpler model for crack extension,

e.g., to model crack extension in very thin materials. In this enforced uniform growth ap-
proach, the CTOA is computed at a user-specified, fixed distance behind each current crack
front. The distance may or may not coincide with a node location. The crack front advances
in increments of this same distance, which may represent multiple elements ahead of the

current front location. Numerical experiments demonstrate this approach produces very

well behaved solutions and affords the option to investigate convergence of crack growth
solutions with mesh refinement. With the introduction of a fixed distance behind the front

at which to compute the CTOA, the mechanics of growth become divorced from the specifics
of the element sizes. The user can specify a different distance for the initiation of growth

and for continued growth (this enables initial crack growth to occur at a specified CTOD).

Finally, with both the general 3-D and enforced uniform growth capability, the user can

explicitly force crack growth at any time by artificially adjusting the critical CTOA value

between load steps.

Crack growth by node release requires these user actions:

• following the procedures for other nonlinear analyses, define the finite element model,
loading, constraints and nonlinear solution parameters. The model must follow some spe-
cific geometry guidelines, which are given below.

• use the commands described subsequently in this section to define parameters controlling
the crack growth procedures (critical angle for release, number of release steps, etc.). The

Chapter 5 5.3-1 Crack Growth

NodeRelease User'sGuidem WARP3D

specification of these parameters is analogous to the nonlinear solution parameters; some
crack growth parameters may be altered during the analysis as noted in the command de-
scriptions that follow.

• use combinations of compute and output commands to control the nonlinear solution over
load steps. The solution management routines in W._RP3D automatically invoke crack
growth procedures.

• the analysis restart features of WARP3D fully support crack growth modeling. Restart files
contain the values of growth parameters and the solution state required to continue an
analysis with crack growth.

To assist the user in performing fracture analyses, additional features are provided by the

crack growth processors. These address the proper specification of load increments and
sizes during crack growth. Because the applied load is discretized into finite size increments

(load steps), it may be difficult to estimate a priori load step sizes so as not to "overshoot"

the critical CTOA value. Similarly, the crack growth process introduces the possibility of

strong history effects on stress-strain fields ahead of the _ack front. If crack growth occurs
over too few load steps, the solution may show an effect _lue to an insufficient number of

load steps. The automatic procedures implemented in the WARP3D crack growth proces-

sors resolve these two problems.

5.3.1 Geometry Requirements

The procedures for automatic node release impose several restrictions on the geometry of

the model. The crack exists initially and propagates within a plane which must be normal

to one of the coordinate axes. Moreover, the crack plane is also a symmetry plane. Consider
all the nodes on the crack plane. Nodes initially unconstrained in the normal direction de-

fine the initial crack shape. Constrained nodes which sh_re an element edge with one or

more unconstrained nodes define the crack front. At least one node on the crack plane must
be left unconstrained, otherwise no crack growth can occur. Multiple crack fronts can exist

on the crack plane. Currently, the node release algorithm does not support focused meshes

which use collapsed elements at the crack tip.

At present, only 13disop elements (8-node bricks) may be defined over the portion of the
crack plane involved in the node release procedures. The model may contain 20-node ele-

O Initially unconstrained nodes

I -- Initially constrained nodes (w = 0)

O -- Crack front nodes (constrained)

1

Crack Symmetry Plane

Crack Face

FIG. 5.3--Example Crack for General Node Release Crack Growth.

Chapter 5 5.3-2 Crack Growth

User'sGuide_ WARP3D Node Release

ments and transition elements elsewhere in the mesh, but not over that portion of the crack

plane involved in the crack growth process.

Figure 5.3 illustrates a simple arrangement for crack growth by node release in which

the initial crack front geometry varies strongly. This also illustrates a possible configura-
tion after some amount of non-uniform growth from an initially straight crack front. Here,

the z direction coincides with the crack plane normal; filled and unfilled circles indicate

crack plane nodes. The three unconstrained nodes on the crack plane (unfilled circles) de-
fine the initial crack (shaded area) with the corresponding five crack front nodes (shaded

circles). The unconstrained node a, for example, makes nodes b and d lie on the crack front.
Node v is not on the crack front since it does not share an element edge with any uncon-

strained node on the crack plane.

This crack growth process as implemented in WARP3D is quite general. For example,

it easily models non-uniform crack growth along an initial semi-elliptical surface flaw in

a fiat plate, pipe, pressure vessel, etc. Moreover, multiple crack fronts are detected auto-

matically by the growth processors and the cracks may grow to coalesce during the loading

process.

A less general capability is also implemented for those situations requiring uniform

growth along a front, e.g., to model growth in thin materials where very local 3-D effects
at the front can influence the CTOA but where growth is satisfactorily represented as uni-

form over the thickness. In such cases, the number of elements defined over the crack front

in the model must remain fixed from one increment of growth to the next. Consider, for ex-

ample, a thin plate modeled with eight, variable thickness layers of 8-node elements over
the initial crack front. After each increment of growth, there must always be eight similar

layers of elements. The element size in the direction of crack growth at each front should
be maintained at a constant value in the mesh. At locations on the crack plane beyond the

growth region, the mesh can be transitioned to other configurations and types of elements
over the thickness. With this restricted growth model, multiple initial cracks may be de-

fined and those cracks may also grow to coalesce.

5.3.2 Input Commands

The following commands initiate the definition of parameters for crack growth by node re-
lease:

crack (r_h) (ap_..a._rneters)

I .one(of) (cr__.aack)(rgLo__w_th) node release _)

where none turns off subsequent node release during the analysis. Unlike the element ex-

tinction algorithm, crack growth by node release can be turned on and off at any time. Crack

growth by node release and crack growth by element extinction cannot both be used in a

single analysis.

The node release algorithm requires specification of the crack plane. The command to

describe the crack plane is

where x, y, or z denotes the direction of the normal to the plane, and <number> sets the posi-
tion of the plane relative to the origin (e.g. the command crack plane normal z coordinate

5.0 describes the plane z = 5.0). This command has no default; without a crack plane defini-

tion, program execution terminates at the next compute command.

Chapter 5 5.3-3 Crack Growth

NodeRelease User'sGuidem WAR P3D

lxlcrack (lap_.JaD_)normal y coordinate <number>

z

Critical Angles for Growth -- Non-Uniform Growth Along a Front

The processors release a crack front node when the crack tip opening angle (CTOA) at the

node is within 1% of a critical value. WARP3D requires two critical angles; one for initiation

of crack growth (initiation angle) and one for continued growth (release angle). The initia-

tion angle only applies to nodes on the initial crack front, while the release angle applies to
nodes added to the crack front as it evolves; this simulates the difference in the deformation

required for crack initiation and continued growth. The commands for specifying these crit-
ical angles are:

constant (front) .g.Egwthoff

#._0_gle(for) release < critical angle: value >

n_.a_&gle(for) initiation < critical angle: value >

where <critical angle> has units of degrees. Note that the values describe the full angle at

the crack tip, and thus are twice the angle from the model to the crack plane. The critical
angles have no default value, and cause WARP3D to stop at the next compute command
if not set.

The node release processors compare the appropriate critical angle with the current

opening angle for each crack front node. If a crack front node has several opening angles

(i.e., shares element edges with multiple unconstrained nodes), the processors compare
each angle with the critical value. Computation of the current opening angle proceeds as

follows (see Figure 5.4): Consider crack front node a and the corresponding unconstrained

node b. Construct a line through nodes a and b. Find the vngle O1 between the constructed
line (a-b) and the projection of the constructed line in the crack plane (a-d); this angle is

half of the current opening angle. Repeat this process for _odes b-c. If 2® 1 > (0.99 × critical

CTOA), the processors release the constraint on node a. If 20 2 > (0.99 × critical CTOA), the
processors also release the constraint on node c.

When any of the opening angles at a crack front node exceed 0.99 × the specified critical
value, the crack growth processors release the constraint on that node in the normal direc-

tion of the crack plane; other constraints, if any, remain unchanged. After releasing the
node, the processors convert the nodal reaction force in t:_e normal direction into a nodal

applied force, which decreases linearly to zero either over _. number of sequential load steps
or using a simple traction-separation law. Multiple nodes can be in various stages of release
at any time. A subsequent section gives the commands that describe the force release mod-
els.

Critical Angles for Growth _ Enforced Uniform Growth Along a Front

In some modeling situations, the enforcement of uniform growth along a crack front be-

comes desirable, e.g., growth in very thin materials. In such cases, the user specifies a

single "master" node for each initial crack front. The crack growth processors then locate
all adjacent nodes on each of the crack fronts. The CTOA at a user-specified distance behind

the front of each master node is monitored to govern the crack growth process. When the
CTOA for a master node reaches the critical value, all nodes on that front are released si-

Chapter 5 5.3-4 Crack Growth

User'sGuideD WARP3D Node Release

CTOA1 = 281
CTOA2 = 2(_2

I

I

I

!

!

!

_

FIG. 5.4--Computation of Crack Tip Opening Angles.

multaneously. The corresponding master node on the new crack front is located automati-

cally by the growth processors. This process repeats (immediately) until the crack front ad-
vances a distance equal to the same distance behind the front at which the CTOA is com-

puted (to the nearest whole element size). To enable such automatic processing, the number

of nodes along the new crack front must be identical to the number before growth. WARP3D

requires that the user specify as input the number of crack front nodes to support error
checking and automatic updating of master node lists. The commands to invoke uniform

growth are:

constant (front) g_Lowth on

master (node____)lis__tt <master nodes: integer list>

number (of) nodes (alo__lgAg)front <integer>

where this capability is off by default. The constant growth command must precede the re-

maining two commands. If invoked, both the master node list and the number of front nodes
must be specified. One master node is required per initial crack front. The ordering of mas-
ter nodes in the <list> is immaterial. The overshoot control features key only on the master

nodes when uniform growth is enforced.

The commands to request uniform growth must follow specification of the crack plane

normal. This enables significant, immediate error checking and validation.

For enforced uniform growth, WARP3D computes the CTOA for each crack front master

node at a user-specified distance behind the front. The specified distance does not need to

correspond to a node location. The uniform front extension makes possible this very desir-
able modeling capability. The angle for release commands are modified as follows to support
enforced uniform extension:

angle (fo__[r)release < critical angle: value > distance <value>

angle (for) initiation < critical angle: value > di_.jstance <value>

Chapter 5 5.3-5 Crack Growth

NodeRelease User'sGuidem WARP3D

where the distances specified for initiation and growth may be different. The different value

for initiation proves convenient to set the criterion for initial growth using a critical value
of the CTOD, for example, based on the usual 90-degree intercept definition of CTOD. To

define this situation, set the distance as 0.5 x the critical CTOD and the initiation angle as
90-degrees.

In the above discussion, let Lc denote the distance behind the crack front at which the

CTOA is computed (Lc is the distance value specified in the above two commands). Whenev-

er crack growth occurs, the front is advanced this same distance forward in a single node

release process. Generally, the distance Lc corresponds to a multiple of the element dimen-

sion, denoted Le, on the crack plane in the direction of crack advance. This is not required
but it is most often the case so that the CTOA is computed at a node location. To enable

WARP3D to allocate necessary data structures and to perform consistency checks, the code

needs the value for Le. This information is specified with the command

characteristic (length) < length:number>

where Le _<Lc. When Lc is a simple multiple of Le, the crack advances by Lc/Le whole ele-

ments in the direction of growth during each release process. When Lc is not a simple multi-
ple of Le, the crack advances by the nearest whole number of elements. If LdLe = 1.4, for

example, the crack front advances one element forward; if Lc/Le = 1.6 the crack advances
two elements forward, etc.

Critical Angles for Growth B Crack Growth on Demand

In some modeling situations, users may desire to force crack growth immediately before the

next load step of the analysis irrespective of the crack growth criterion. We expect this capa-
bility to be used from the start of crack growth in an analysis. The recommended set-up of

the crack growth parameters is:

• Set the critical angles for initiation and continued growth to have very large values.

• Use the step release method to relax reaction forces on newly released nodes (use of the
traction separation method for forced growth is comple_ due to the changing angles)

• The overshoot and load-reduction features are not applicable for this type of analysis.
They should not be included in crack growth parameters.

• Suppose the user wants the next increment of crack growth to occur at the beginning of
load step n. Then, after step n-1 has completed, and before the solution for step n be-
gins, re-define the critical angles to have very small values. The crack growth processors
then trigger an increment of growth (for general 3-D at all current front nodes or at all
crack fronts for enforced uniform growth).

• Right after the solution for step n, reset the critical ant :les back to very large values.

• Repeat the above sequence each time an increment of crack growth is needed during the
analysis.

Overshoot Control

Analyses conducted using large load step sizes may expelience significant "overshoots" of

the critical angle before the crack growth processors detect the event at the beginning of

the next load step. For example, if the critical angle is 10°: large step sizes may cause node
release at some angle larger than 10 °, due to the discreti_ation of the loading path into fi-

nite size load steps. The crack growth processor includes _ mechanism to reduce this over-

Chapter 5 5.3-6 Crack Growth

User'sGuidem WARP3D Node Release

shoot "error" of the CTOA at release. The mechanism predicts the change in CTOA for each

crack front node over the next step by extrapolating the previous step value, based upon

the user-specified load increment (the numeric "multiplier" in the step definition). If the

predicted angle exceeds a specified percentage of the critical angle, the growth processors
reduce the loading multiplier by the amount required to eliminate the overshoot. However,

the nonlinearity of the solution makes this only an approximate process. The procedure per-

forms this computation at all crack front nodes and uses the largest reduction found. A limit
on the load reduction may be specified to avoid excessively small load steps. This process

executes prior to the actual solution for a load step and simply scales the incremental loads
(and non-zero constraints). Consequently, the adaptive load step algorithm used to enhance

convergence of the Newton iterations remains fully available if needed by the process that
directs the solution for a load step.

The commands to request overshoot control are:

on i p._e_Lcent(overshoot) <overshoot_limit: value>_°versh°°t (c°n_tr°l) I °ff l minimum (reduction) <reduction limit: value>)_._l

where <overshoot limit> specifies the maximum allowable overshoot as a percentage of the
critical angle, and <reduction limit> specifies the smallest allowable load factor expressed

as a percentage of the original load step size. By default, the overshoot control mechanism
is disabled. When activated with the above command, the default value for maximum over-

shoot is 2.0 (i.e., 2.0%), and the minimum load reduction is 10.0 (i.e., 10.0%).

Numerical testing shows that overshoot control is highly effective in plane-strain mod-

els and in 3-D models with enforced uniform growth along the crack fronts. However, it can

be less effective in general 3-D crack growth when nodal force release follows the traction-

separation model coupled with a small release fraction _). This follows because multiple
nodes can be in various stage of release along each crack front with strong, nonlinear inter-

actions between them as the remaining force decreases to zero. The use of/5-values in the

0.3-0.5 range, or smaller load steps, improves the ability of the mechanism to reduce the
overshoot error in 3-D.

Control of Simultaneous Node Releases

When load steps are too large, only one or two steps may occur between consecutive node
releases (with or without overshoot control). This may allow the force release process to af-

fect adversely the stress-strain history of material ahead of the crack front. To alleviate this

problem, WARP3D provides a feature to reduce automatically the load step size based on

the number of load steps between consecutive node releases. The reduction algorithm oper-
ates as follows for general 3-D growth. Consider a current crack front node with several

neighbors having opening angles larger than the critical value for release. If the number

of load steps since each of these neighbors were released is less than a user-specified value,
the growth processor sets a permanent 50% reduction on all future load step sizes. This 50%
reduction may occur any number of additional times if the load steps remain too large.

The command to request automatic load reduction is:

au,o a,c,oa0,,re0uc,,o ,l I_ n,e0e ,

Chapter 5 5.3-7 Crack Growth

NodeRelease User'sGuide-- WARP3D

where <steps> denotes the minimum number ofsteps allowablebetween node releases.By

default,the minimum number ofsteps between node releasesis6 and the load reduction

algorithm isoff.The procedure works inthe same manner forenforced uniform growth but

only the master node at each crack front enters intothe decisionprocess.

Status Printing

The node releaseprocedures provide a convenient printingoptiontosimplifyinterpretation

ofthe growth process.The command has the form

rP--dnt(status) I °ff Ion

where the keyword on or offisrequired.At the beginning ofeach load step,thisprinting

optionprintsthe current crack frontnodes and the corresponding crack tipopening angles.

The print command also provides options to listthe initialcrack frontnodes and the

crack plane nodes,both locatedby the automatic search procedures builtintocrack growth

processors.The command syntax is:

rp_d.mcrack front nodes

rp_rjn!oraok nodes

5.3.3 Release Models for Reaction Forces

Release Over a Fixed Number of Load Steps

The simplest procedure to relax the reaction force for a released node employs a fixed num-

ber of load steps. The commands to specify this option are

force (release) (!Y.,_) _s

release(st_L_s)< integer>

This forcereleasemodel isthe defaultoption,with a defaldtvalue of5 steps.The user can-

not alterthe number of releasesteps once the processorsfor crack growth releasenodes.

A complete example forgeneral,3-D crack growth input using thisforcereleaseprocedure
is:

crack growth parameters

type of growth node_release

crack plane normal z coordinate 0.0

constant front growth off

angle for release 20.0

angle for initiation 100.0

force release type steps

release steps i0

overshoot control on percent overshoot 10.0

automatic load reduction on minimum steps 8

print status on

minimum reduction 20.0

While the above procedure issimple,computed solutionsmay exhibita dependence on

the number ofload stepsemployed in the analysis.Ifthe load stepsare large,forexample,

the above procedure (withrelease steps> I)artificiallyrestrictsopening ofthe crack faces.

In analyses with very small load steps,the reaction forcesmay reduce to zerotoo quickly.

Chapter 5 5.3-8 Crack Growth

User'sGuide--WARP3D Node Release

Traction-Separation Procedure

The linear traction-separation model improves upon the fixed number of steps approach by

placing the force release process on a more physical basis. In this model, 20% of the reaction
force is released immediately; the remaining 80% decreases linearly with the increased

opening displacement of the node, reaching zero at a specified opening displacement. The
immediate release of 20% proves removes the possibility of spurious crack closing. A frac-

tion,/5, of the critical CTOA for continued crack growth (release angle) provides a conve-
nient means to define the opening displacement. Consider Figure 5.5a, where node a repre-

sents a released crack plane node and node b represents a constrained crack plane node.

At release, the reaction force on node a changes to an applied nodal force. After further de-

formation, node a opens to position a'. In this position, the angle between the crack plane
and the element edge (a'-b) equals the specified fraction of one-half of the critical CTOA

(/3x critical_angle�2). This is the release height from the node to the crack plane (line seg-
ment a'-a) at which the nodal force is fully reduced to zero. When node a lies between posi-

tions a' and a, the reaction force decreases linearly, as described by:

Current Distance

7 = 0.8 - Release Height (0 -< ? -< 0.8) (5.3)

where ? is the fraction of the reaction force on the node (see Figure 5.5b). Note that there
is an immediate 20% reduction of the nodal force to prevent spurious re-closing of the crack

face.

Use with general 3-D growth

Since there are no restrictions on the lengths of the element edges on the crack plane, edges

of different length may connect to a crack plane node. Therefore, using element edges in
the calculation of the release height may result in multiple height values. To resolve this

ambiguity, the traction-separation model employs a user-defined, characteristic length
instead of the length of individual element edges. The characteristic length describes the

generic edge length on the crack plane; it could be the average of the edge lengths, a median

edge length, or based on some other criterion. Using the characteristic length, the release

height, D, becomes:

D = L tan(fl0c/2) (5.4)

where L is the characteristic length,/9 is the release fraction, and Pc is the critical CTOA

for continued crack growth. The choice of characteristic length, L, directly affects operation
of the node release procedures. If the edges connected to a crack plane node are significantly
smaller than the characteristic length, all the neighbors of the node may be released before

the reaction force reduces to zero. Also, if the characteristic length is too small, the reaction

forces may dissipate too quickly. In Figure 5.5a, the characteristic length corresponds ex-

actly with the length of the element edge on the crack plane.

Input commands to specify the traction-separation model are:

force (release) (J_____)traction(_ation)

release (fraction) </3 factor:number>

characteristic (le_Egth) < length:number>

The node release processors require the input of a characteristic length; there is no default

value./9 is the fraction of the critical CTOA for continued crack growth (release angle), with

Chapter 5 5.3-9 Crack Growth

NodeRelease User'sGuide-- WARP3D _

Release l

Height | ,

Normal _ I_l_, _
to Crack /
Plane / a"

I- \ =
Characteristic Length

specified fraction of half of
,, critical release CTOA

(e = p x critical_angle�2)

b

a) Example of Release Height for a Typical Element

7 = fraction of extinct element
forces remaining on nodes

0 Release
Height

., Distance of Node a
v from Crack Plane

b) Linear Traction-Separation Model

FIG. 5.5_Traction-Separetion Model for Release of Nodal Reaction Forces

a defaultvalue ofO.1.Neither of these values may be changed afternodes have been re-

leased.A complete example ofcrack growth input using the traction-separationmodel is:

crack growth parameters

type of growth noderelease

crack plane normal z coordinate 0.0

constant front growth off

angle for release 20.0

angle for initiation 100.0

release type traction-separation
release fraction 0.2

characteristic length .01

automatic load reduction on minimum step_; 8

overshoot control on percent 1.0 minimum reduction 1.0

print status on

Use with enforced, uniform growth

Since there are no restrictions on the lengths of the element edges on the crack plane, edges

of different length may connect to a crack plane node. Therefore, using element edges in
the calculation of the release height may result in multip .e height values. To resolve this

ambiguity, the traction-separation model employs the distance, Lc, for continued growth
(defined previously with the critical angle) instead of the length of individual element

edges. Using Lc, the release height, D, becomes:

D = Lc tannic/2) (5.5)

Chapter 5 5.3-10 Crack Growth

User'sGuide- WARP3D Node Release

where fi is the release fraction, and 0c is the critical CTOA for continued crack growth.

Input commands to specify the traction-separation model are:

force (release) (_._e_) traction(-se____p__ation)

release (fraction) </_ factor:number>

where _ is the fraction of the critical CTOA _r continued crack growth (release an_e), with
a default value of 0.1. This value cannot changed after any nodes have been released. A

complete example of crack growth input using the traction-separation model with enforced

uniform growth is:

crack growth parameters

type of growth node_release

crack plane normal z coordinate 0.0

constant front growth on

master node list 3489 2032

number of nodes along front 9

angle for release 5.1 distance 0.040

angle for initiation 10.2 distance 0.060

characteristic length .010

release type traction-separation

release fraction 0.2

automatic load reduction on minimum steps 8

overshoot control on percent 1.0 minimum reduction 1.0

print status on

5.3.4 Node Release Algorithm

During the initialization phase, the node release processors find all of the nodes on the crack
plane within a tolerance based on the maximum model dimension in the direction normal

to the crack plane. From this information, the processors identify the crack front nodes as
all the nodes constrained in the normal direction on the crack plane which share an element

edge with an unconstrained node on the crack plane. The program terminates at the next
compute command if it cannot find any crack plane nodes.

At the beginning of each load step n (n>l), or adaptive sub-step, the processors calculate
the crack tip opening angle (CTOA) for each node on the crack front (general 3-D growth)

or each master node (enforced uniform growth). When the angle reaches the critical value,

the following actions occur:

• The processors release the constraint normal to the crack plane.

• The reaction force normal to the crack plane changes into a nodal force which decreases
in a linear fashion over subsequent load steps. Because the reaction force changes into a
nodal force and thereafter behaves as an ordinary (user-specified) force, crack growth does
not effect operation of the (global) adaptive step algorithm. Such global adaptivity of the
load step sizes often proves essential for obtaining converged solutions following a growth
increment.

• The crack front expands to include the constrained nodes in the crack plane which share
an element edge with the released node.

• The crack growth processor modifies the nonlinear solution parameters as follows: a linear
stiffness matrix is requested for the first iteration of the upcoming load step. Such use of
the linear stiffness matrix for the structure properly accounts for elastic unloading that
generally occurs immediately following a node release. This modification in the nonlinear
solution procedure is found necessary to maintain high rates of convergence.

Chapter 5 5.3-11 Crack Growth

NodeRelease User'sGuide--WARP3D _

Eventually, only a few constrained nodes may remain on the crack plane. This state
may cause the solution to fail to converge and/or give anomalous displacement values. The
analysis should be halted before this situation occurs.

Effect of User Constraint Changes

When changing the global constraints between steps, the user may inadvertently re-

constrain a previously released node. To alleviate this problem, the processors check all the
previously killed nodes at the beginning of each load step and remove all new constraints

on these nodes in the direction normal to the crack plane.

5.3.5 Analysis Guidelines

Crack growth analyses using node release place severe demands on the nonlinear solution

procedures implemented in the code. Experience derived from a number of crack growth
analyses suggests the following guidelines as starting points for consideration.

Number of Load Steps

Controls the overall solution convergence and resolution of the deformation process. Crack
growth analyses generally reveal strong history effects; the computed R-curves and near-

tip fields are sensitive to the load step sizes and to details of the reaction force release at

crack extension. As an example, consider an SE(B) mode] with a/W= 0.6 and W = 50 mm.

The material is a mild structural steel with moderate strain hardening. Element sizes
along the crack plane are 0.1 mm. A typical CTOA for initiation of growth is 80-90 ° and 15 °

for continued growth. Successful analyses using 100 equal size load steps to initiate growth
and 400 additional steps to extend the crack 4 mm have i)een generated. These solutions

employ displacement control loading; small geometry change and large geometry change

solutions require essentially the same number of iterations for convergence at each step.

The computed J-Aa curve reveals very minor differences for a larger number of load steps
or even a slightly smaller number of steps. In this example analysis, the crack extends by

I element every 10 load steps. Analyses with many fewer load steps also obtain converged

solutions but reveal dependencies on the load step sizes.

Solution Procedures

WARP3D provides the user full control of the incrementa]-iterative solution process. Cur-
rent recommendations for crack growth analyses are as f:)llows:

solution technique: platform specific sparse solver for al_ 2-D type models and moderate size
3-D models. PCG for all large 3-D models (try the diagonal precondi-
tioner first as it is more efficient). For "shell" type models, always use
the sparse, direct solvers.

adaptive solution: use the on option, especially for preliminary analyses. In parametric
studies with a good knowledge of t le loading steps required in hand,
adaptive solutions should not be used, i.e., the code will simply "re-
learn" the correct load step sizes req aired for convergence. However, we
have found cases in which the solu:ion appears to "stick" and will not
converge. All such cases observed th._s far have been successfully solved
by forcing the solution to continue on to the next step, which invariably
converges. For such situations, set adaptive off and nonconvergent solu-
tions continue.

extrapolation: displacement extrapolation at the start of a new load step is on by de-
fault. This procedure generally acce:erates the convergence of solutions
including geometric nonlinearity, b_t may cause convergence problems
during crack growth. The current r _commendation is to set extrapola-
tion off once crack growth begins.

ira#

Chapter 5 5.3-12 Crack Growth

User'sGuide--WARP3D Node Release

linear stiffness: the option to use a linear stiffness to resolve iteration 1 of a step helps
in cases with large regions of linear-elastic unloading. Normally, this
option should not be used (slows convergence) and it is off by default.
The crack growth processor forces its use for the next step whenever a
new node is released (see previous notes on crack growth algorithms).

Convergence Tests and Tolerances

This is perhaps the most difficult decision in specifying nonlinear solution parameters.
Many problems with non-convergent solutions during crack growth have been traced to tol-

erances set too large. Experience suggests using a combination of two convergence tests as

illustrated by the command:

convergence test norm res tol ???? maximum residual tol ????

where ???? are replaced by actual values appropriate to the actual analysis. Suggested

starting values for crack growth analyses are 0.01 and 0.001 for the first and second tests,
respectively. The norm res test provides good control of the overall convergence of the solu-

tion but often does not indicate proper convergence in small elements ahead of the crack

tip. The second test offers an indirect means of controlling residuals of these elements.
Please refer to the manual sections defining these tests.

Good convergence rates and accurate solutions require small residual forces on nodes

in the crack tip region. The output internal forces <node list> command prints the residual
forces on the specified nodes following convergence (or non-convergence) of the solution.

These forces should be very small relative to forces exerted by these elements on their nodes
due to the internal stresses. A simple estimate for the forces is given by the following proce-

dure: multiply the material flow stress by the element volume/20. Then each component
of the residual force at nodes should be 2-3 orders of magnitude smaller than the estimated

internal force. The internal forces output also include actual reactions for constrained dof

and should not be included in these comparisons.

Chapter 5 5.3-13 Crack Growth

Chapter 6

Contact Procedures

6.1 Introduction

Many of the most difficult problems in solid mechanics involve the contact interaction be-

tween deformable bodies. Key examples include metal forming processes (rolling and die-
casting) and crash-impact problems. In fracture mechanics, problems of crack closure and
the proper modelling of experimental conditions often necessitates treatment of contact.

Regions of a finite element model which undergo contact have boundary conditions that

vary with the amount of deformation. In contact, implicit analyses are especially challeng-
ing as the boundary conditions may change abruptly during a load increment. This intro-

duces severe nonlinearity into analyses, with corresponding changes in model behavior and
solution convergence rates.

The large volume of research on contact algorithms offers a range of complexity in avail-
able approaches to treat contact [92]. The literature typically focuses on two aspects of con-
tact algorithms--contact detection and contact enforcement. Detection of contact in the

most general form, where any part of a modeled body can interact with any other body
and/or itself, often consumes most of the computation time for an analysis and introduces

significant complexity in the code. Finite element codes often employ a number of tech-

niques to simplify contact detection by explicitly identifying regions which may contact
each other, or by limiting contact to simple rigid surfaces. Enforcement of contact proceeds

along one of two approaches. Lagrange multiplier techniques eliminate penetration of con-

tact surfaces by including additional constraint equations directly in the solution of the pro-
blem. The Lagrange multipliers, included as additional unknown scalar variables, become

the forces required to eliminate penetration. This technique is very popular in implicit
codes; however, the additional equations may cause the global structural stiffness matrix

to become positive semi-definite, thus limiting the techniques available for solution of the

corresponding linear system. The penalty method provides an alternative approach by
introducing very stiff springs which move penetrating nodes back to the contact surface.

This method allows some limited penetration between bodies. Increasing the penalty pa-

rameter (spring stiffness) reduces the amount of penetration. Although the penalty method
retains a positive definite stiffness matrix, very high penalty parameters can make the

stiffness matrix ill-conditioned, causing convergence problems and significant round-off er-
ror in the final results. Efficient analysis requires care in choosing an appropriate penalty

parameter. Other approaches to enforce contact conditions involve hybrids between these
methods ([35],[92]).

The contact algorithms in WARP3D implement frictionless, rigid-body contact using a
standard penalty method. Contact between deformabl,_ bodies and self-contact are not sup-
ported in this implementation. Contact occurs betwee_: nodes of a finite element mesh and

a user-defined set of rigid contact surfaces. Currently, WARP3D supplies three geometries
of surfaces which can be arbitrarily oriented in space: finite-sized rectangular planes, cylin-

ders, and spheres. Additional surfaces may be added as needs warrant. The contact proces-
sors allow the assignment of velocities to the contact surfaces to simplify simulation of mov-

ing boundaries. Each contact surface requires a stiffness (penalty parameter) which limits

mm¢

Chapter 6 6.1-1 Contact Algorithms

_, User's Guide _ WARP3D

the penetration between the model and the surface. Specification of an appropriate stiff-

ness can be difficult; Section 6.4 provides some guidance on this topic. The algorithms also

address issues of multiple contact, where a node penetrates more than one contact surface.

This enables the appropriate treatment of intrinsic and extrinsic corners in contact analy-

ses. The implementation of contact is completely compatible with all other parts of
WARP3D, including crack growth, finite deformation, all material models, restart facili-

ties, and parallel execution.

This chapter continues with a description of the contact algorithms used in WARP3D,

including an overview of the penalty method, a summary of the contact detection tech-

niques, a description of the algorithms which handle intersecting contact surfaces, and key
details of the parallel implementation of contact. A section on contact input describes the

necessary commands for contact specification, as well as some restrictions on contact mo-
dels. Section 6.4 provides advice on performing analyses with contact. The chapter con-
cludes with a section of examples which illustrate three WARP3D contact analyses: rolling

of a steel bar, crushing of a pipe, and crack closure on a pin-loaded C(T) specimen.

Chapter 6 6.1-2 Contact Algorithms

User'sGuide-- WAR P3D Numerical Procedures

6.2 Numerical Procedures

6.2.1 Overview of the Penalty Method

The penalty method defines a simple approach to enforce displacement constraints in the

solution of a finite element model. It has a variety of applications, including the imposition

of multi-point constraints, incompressible material models, mesh locking problems, and
contact enforcement [16]. The penalty method follows from the minimum potential energy

formulation of the finite element method. The potential energy for a finite element model
is

II = 1 lfrKU _ U_rF (6.1)

where U is the vector of nodal displacements, Kis the global stiffness matrix, F is the corre-

sponding nodal force vector, and H is the potential energy. An equilibrium configuration

(deformed shape) for the structure makes the potential energy take on a local minimum.
The minimum potential energy occurs when OII/OU= O, thus:

oil = KU - F = 0 (6.2)
OU

which results in the standard equilibrium equations KU = F.

The penalty method as applied to contact adds an additional term to Eq. 6.1:

1-1= 1 UTKU _ UTF + 1prep (6.3)

where P corresponds to the penetration displacement of nodes into contact surfaces, and

a corresponds to the "penalty parameters", constants which determine the relative impor-

tance of forcing the penetration to zero. An increase in the magnitude of the penalty param-
eter causes the penetration to have a stronger effect on the total potential energy, thus en-
forcement ofP = 0 becomes proportionally more strict. The terms in a have units of stiffness

so that 1/2prap has units for energy. Solution of OII/OU= 0 for Eq. 6.3 transforms the equi-
librium equations to K'U=F', where K' is the effective structural stiffness matrix and F'

is the effective force vector including the effects of contact.

An equivalent approach to implement the penalty method for contacting bodies creates

springs at the contact points (see Figure 6.1). The springs, placed between each penetrating
node and the closest point on the penetrated surface, have a very high stiffness which re-

duces the penetration nearly to zero. The spring stiffness corresponds to the penalty param-
eter, while the amount of remaining penetration corresponds to the error in the enforce-

ment of the constraint. A larger spring stiffness decreases the magnitude of penetration

after introduction of the spring. However, too large a spring stiffness can cause numerical
difficulties. Addition of such a spring affects two parts of the finite element calculations:

inclusion of the contact force into the residual force vector, and addition of the spring stiff-

ness in to the global stiffness matrix. Experience indicates that increasing the stiffness of

the spring slightly when including it in the stiffness matrix eliminates oscillation problems
caused by the over-compensation of penetration. Consequently, WARP3D uses a penalty
stiffness 0.1% higher than the user-specified value fcr the stiffness matrix calculations.

Furthermore, WARP3D adds each spring stiffness into the corresponding element stiffness
matrices instead of directly into the global stiffness matrix. Thus, for example, if6 elements

connect to a contacting node, then each element stiffixess receives 1/6 of the total spring
stiffness introduced at that node. This approach allow s full use of the element-by-element

architecture inherent inside WARP3D, as well as the linear preconditioned conjugate gra-

Chapter 6 6.2-1 Contact AIgorithms

User'sGuidem WAR P3D Numerical Procedures

dient solver (LNPCG). Contact between two deformable bodies requires application of the

contact force to the penetrating node and the penetrated element. However, rigid body con-
tact eliminates the need to compute forces on penetrated elements; the contact springs only

affect penetrating nodes. This greatly simplifies the calculation of contact forces and the
additions to element stiffness matrices [21].

node1

Rigid Surface

FIG. 6.1--Illustration of penalty method

Addition of the spring stiffness into the element stiffness matrix seriously degrades the

convergence of the LNPCG solver. A large spring stiffness increases the spread of eigenva-
lues for the system, thereby increasing the number of iterations required for convergence,

if convergence remains possible at all. For this reason, the specified value for the penalty

parameter requires additional care when employing the LNPCG solver; see Section 6.4 for
details on choosing the contact stiffness. Furthermore, diagonal dominance of the stiffness
matrix is crucial for effective LNPCG convergence. If the contact spring is orthogonal to one

of the global coordinate directions, then the spring stiffness adds solely to a corresponding

diagonal term in the element stiffness matrices. However, if it lies skewed to the global
axes, then part of the spring stiffness adds to off-diagonal terms, reducing diagonal domi-
nance of the element stiffness matrix. To alleviate this problem, the contact processors

construct a local coordinate system at the penetrating node which is orthogonal to the

spring force. All global data values at the node are rotated into the new coordinate system.
As a result, the spring stiffness adds directly into the diagonal of the element stiffness ma-

trix. If the node has no explicit constraints, then formation of the nodal coordinate trans-

formation is straightforward. If the node has one constraint, then formation of the trans-
formation is only possible if the spring force and the direction of the constraint are

orthogonal. In cases where formulation of a nodal coordinate transformation is not compat-
ible with specified constraints, the penalty stiffness terms add to the element stiffness in

global coordinates. If a node undergoing contact utilizes a (local) nodal coordinate trans-
formation defined previously through user input, then calculation of contact becomes diffi-
cult; currently, the contact processors print an error message and stop execution of the code

when this occurs.

6.2.2 Contact Detection]Calculation

WARP3D determines contact between nodes of the finite element mesh and a set of rigid

contact surfaces at the beginning of each global Newton iteration to solve the equilibrium

Chapter 6 6.2-2 Contact AIgorithms

User'sGuide_ WARP3D Numerical Procedures

equations. During the contact detection phase, contact processors compare all nodes in the
structure with all defined contact surfaces. The implementation currently provides three

geometries of rigid contact surfaces; finite-sized rectangular planes, cylinders, and spheres.

When a node penetrates one or more of the contact surfaces, the contact algorithms com-
pute the amount and direction of the penetration. This section describes the contact and

penetration algorithms for each of the contact surface geometries. Please see Section 6.3.3

for additional description of the contact surfaces and the corresponding input.

Finite-Sized Rectangular Planes

The geometric description of the rectangular plane includes a base point corresponding to

one of the corners of the rectangle, two vectors which extend along the edges of the rectangle
from the base point to the two adjoining corners, and a normal vector. Figure 6.2 shows the

geometric description and outlines the contact detection algorithm.

, Compute a position vector between current location of the node p and the
base point of the rectangle

v' = p -- PR

2. Compute the dot product between this vector and the normal to the plane;
this is the negative of the penetration. If penetration is negative or zero, no
contact.

d = -(v'.n); d <_O_no contact

3. Compute dot product between v' and the two edge vectors

a = (v'. v l)

b = (v' • v2)

4. If both dot products are between 0 and 1, then the node has penetrated the
rigid surface

0 < {a,b} < 1 _ contact

T
n 2

PR

FIG. 6.2---Contact Detection for Rectangular Plane

W

Chapter 6 6.2-3 Contact Algorithms

User'sGuide_ WARP3D Numerical Procedures

Cylinder

The spatial orientation of the contact cylinder uses a base point, a vector pointing in the

direction of the center line, the length of the cylinder, and the radius. Figure 6.3 outlines

the contact detection algorithm.

1. Compute a position vector between the current location of the nodep and the
base point of the cylinder

v' = p - PC

2. Compute the angle between the vector and the center line of the cylinder.
If the angle is greater than 90 degrees, no contact is possible, so return.

[,, _'-n
0= cco, j;o> -nocontact

3. Calculate penetration: radius of cylinder minus distance from node to closest

point on center line. If there is no penetration, return.

d = R - liv'llsin O; d < 0 _ no contact

4. Compute distance between base point and projection of node on to center
line. If distance is greater than the cylinder length, return.

h = llv'[IcosO; h > L _ no contact

L

¥

Z'

FIG. 6.3--Contact Detection for Cylinder

Sphere

The sphere requires only a base point and a radius to completely describe its orientation
in space, making detection of contact very simple. The processors compute the vector be-

tween the center point of the sphere and the node. If the length of the vector is less than
the radius of the sphere, contact occurs. The spring force acts in the direction of the calcu-
lated vector.

Chapter 6 6.2-4 Contact Algorithms

User'sGuidem WARP3D Numerical Procedures _

6.2.3 Penetration of Multiple Contact Surfaces

If a node penetrates several contact surfaces, the contact algorithms must return the
node to the correct location. However, the choice of which set of surfaces should be con-

sidered is not always clear. For instance, Figure 6.4 shows an element with three of its

nodes penetrating a set of three contact planes. Node a penetrates surface 3, so a single

spring returns it to the correct location. Node b penetrates both surfaces 1 and 2, but

the node should return only to surface 2. All three planes influence node c, but the cor-
rect return point is to the intersection of surfaces 2 and 3.

surface 1
surface 2

surface 3

FIG. 6.4---Nodes penetrating multipie contact surfaces

To handle these conditions, the contact processors in WARP3D compare each of the
penetrated contact surfaces by temporarily returning the node to a contact surface, and

evaluating if the other shapes are still penetrated given the new location. By looping over

the contact planes, this process eliminates all the superfluous contact surfaces, leaving only
the set which must be simultaneously satisfied. The processors also calculate the location

to which the node returns following the imposition of _ach of the valid contact shapes. Fig-

ure 6.5 provides additional details on the algorithm.

A separate algorithm constructs the new return location given a new contact surface,

as shown in steps 3.c and 3.d of Figure 6.5. The processors compute the nearest point on

the intersection of the previous return location and the new contact surface. The algorithm
assumes during this step that all contact surfaces are planes. This causes some error for

curved surfaces (cylinders, spheres), but if the load steps are sufficiently small, this error

is negligible. Also, the algorithm may require additioz_al Newton iterations for global con-
vergence in problems with intersecting curved contact surfaces.

This algorithm appears to handle correctly cases where nodes penetrate multiple con-
tact surfaces. Highly complicated constructions of contact surfaces or large load steps may

cause this algorithm to fail; the use of relatively few intersecting contact surfaces and small
load steps is advised.

6.2.4 Parallel Implementation

The parallel implementation of WARP3D uses a mes,_age passing approach (MPI) with a

single "master" processor and many "slave" processor:;. To support contact during parallel
execution, the root processor sends all slave processors the data for every defined contact

Chapter 6 6.2-5 Contact Algorithms

User'sGuidem WARP3D Numerical Procedures

1. Compare the node location, p, against the set of all contact surfaces, e, as-
sessing penetration P. Construct ¢ n, a list of the k penetrated surfaces or-
dered from the smallest to largest penetration.

e- ={e:e(e,,p)>0}
2. Consider the contact surface which the node penetrates the least. Set the

current return location, r, to the location which returns the node to this sur-

face along its normal, n.

L(ei,p) = p - P(ei,p)n(ei,p)

r = L(e_,p)

3. Loop over the remaining sorted contact surfaces:

a.

en'i = 2,3,...,k

Determine the penetration of the new contact surface by the current return
location. If the new surface is not penetrated, remove it from the list of pene-

trated surfaces and proceed to the next contact surface.

P(en, r) <0 _ _n=_n--en'i' i=i+ 1

b. Find the location ri' which returns the node to the current contact surface,
and zero the current return location.

r i' = L(ei,p), r = 0

c. Determine if new contact surface supercedes any previously verified sur-

faces. Loop over previously evaluated contact surfaces; if the location ri' does

not cause penetration of Cj, remove Cj from e n. Otherwise, include contact
plane into new return location.

j=1,2,3,...,i-1

){<0i >0

:=_ C n = C n -- C n
./

k./ /

d. Include new contact surface in return location.

,

r = rnL(e_,p)

Continue looping over all contact surfaces until all initially penetrated sur-

faces have been processed.

FIG. 6.5--Algorithm for treating nodes which penetrate multiple contact surfaces

Chapter 6 6.2-6 Contact Algorithms

User'sGuide_ WAR P3D Numerical Procedures _

surface. During the contact detection phase, processors assess contact for all nodes con-

nected to elements which they own. Processors also compute the contact force for the nodes

which they own. After all processors complete evaluation of contact for the appropriate
nodes, the slave processors send their contact force contributions to the root processor,

which reduces the contributions into the global contact force vector. The slave processors

also send the computed nodal coordinate transformation matrices for all owned nodes;
these are used in subsequent force calculations and result output.

Chapter 6 6.2-7 Contact AIgorithms

User'sGuide-- WARP3D Contact Commands

6.3 Commands for Contact

6.3.1 Outline of Process

Contact in WARP3D takes place between a deformable mesh and a set of rigid contact sur-

faces. Specification of rigid contact surfaces may occur at any point in the input file. Input

involves a block of commands, beginning with the contact surfaces command, followed by

specifications for each contact surface. The description of a contact surface includes infor-

mation about the type of surface, the geometry, the location in space, and the basic parame-
ters (stiffness, surface velocity, etc.). Errors encountered in the input for a contact surface

cause the contact processors to ignore the surface. Re-definition or removal of one or more

contact surfaces may occur between any computational step. Adequate convergence of the

analysis may require a change of the penalty parameters at different times in the analysis
(see the tips section for additional information). Currently, WARP3D allows up to 20 de-

fined contact surfaces in an analysis.

6.3.2 Initiating Contact Definition

The command to initiate the definition of contact surfaces has the form

contact (surfaces)

The contact input processors assume the commands following this statement pertain to
contact. Contact input stops once the processors encounter a command they do not recog-
nize.

6.3.3 Description of Contact Surfaces

WARP3D currently supports three geometries of contact surfaces: rectangular surfaces,

cylinders, and spheres. Description of a contact surface requires the specification of the type

of surface, the geometry, the orientation in space, and the basic parameters (stiffness, veloc-

ity, etc.).

The command to initiate the definition of a contact surface is:

I Diane Isurface < surface number: integer > c_.y!linder
s_p_h_ere

where surface number is a number between 1 and 20. Only one surface may be assigned

to a specific surface number; defining a surface with a specific surface number supercedes

any previous surface definitions assigned to that number. Sequential numbering of contact

surfaces is not required.

Information Required for all Contact Surfaces

All contact surfaces require a stiffness (penalty parameter). The command

(contact) stiffness < stiffness: number >

specifies the stiffness for the contact surface currently under definition. The stiffness value

must be a number greater than zero. Efficient analyses may mandate altering the stiffness
of a surface during solution (see the tips section for additional information). There is no de-

fault for this value.

Chapter 6 6.3-1 Contact Algorithms

User'sGuide_ WAR P3D Contact Commands _

Contact surfaces may also move through space over time. The following command gives
the velocity of the surface:

velocity < dx: number > < dy: number > < dz: number >

where the velocity has umts of distance per unit time. The default value for the velocity is

zero in all directions. Note that this command requires appropriate setting of the time step
size (see Section 2.9 on solution parameters). Currently, the contact processors translate,

but do not rotate, contact surfaces. Rotation of a contact surface occurs only through user

re-definition of the contact surface after each load step.

Rectangular Surface

The rectangular contact surface is a fiat surface located in space with a given normal. The

normal defines the positive (outward) side of the surface. The rectangular surface defines

a right rectangular prism extending in the negative normal direction a depth as specified

in the contact input. All nodes falling within the volume of the rectangular prism are pene-

trating nodes, with penetration defined as the distance to the rectangular surface. See Fig-
ure 6.6 for a typical rectangular contact surface. Section_ 6.2.3 describes the algorithms

which handle intersections between multiple rectangular surfaces and/or other contact
surfaces.

Y

Z'

Ps={4 6 1}

p,={3 2} ::

Normal Calculation:

V1=P2-P1--[2-1 1]
V2=P3-P1=[1 1 -1]
V3= V1× V2= [.707.707 O]

Sample Input:

contact surface
surface 1 plane

point 3 5 2
point 5 4 3
point 4 6 1
depth 4
stiffness 1.0e8

FIG. 6.6--Definition of rectangular contact surface

Designation of the geometry of the rectangular surface requires the specification of
three points in space (use the following command three times):

< x: number > < y: number > < z: number >

Chapter 6 6.3-2 Contact Algorithms

User'sGuidem WARP3D Contact Commands

These three points define the location in global coordinates of three corners for the rec-

tangle. The first point serves as the base corner for the rectangle, while the second and third

points are the corners adjacent to the base point; see Figure 6.6. The normal of the contact

plane follows from the three points as follows. Denote the three points as Pl, P2, and P3.
Define two vectors, v 1 =P2 -Pl and v 2 =P3 -Pl. The normal is Vl x v2. The normal vector

defines the positive (outward) side of the contact plane; all nodes found on the negative side

of the plane are penetrating nodes. This places several restrictions on the specification of

the three points. The vectors Vl and v2 must define a 90 degree included angle. Further-
more, the order in which the points are input determines the normal vector; flipping the

definition of points 2 and 3 flips the direction of the normal. Users should verify that the
normal vector has the correct direction.

The command to specify the depth of the rectangular contact plane is:

< depth value: number >

where depth value is a number greater than zero. The default value is 1010.

A typical set of commands to define a rectangular contact surface is:

contact surface

surface 1 plane

point 3 5 2

point 5 4 3

point 4 6 1

depth 4

stiffness l. Oe8

velocity 0.i 0.i 0.i

Cylindrical Surface

This is a right circular cylindrical contact surface is a cylinder with a finite length. Contact
occurs on the curved surface -- nodes penetrating the flat circular ends are moved to the

nearest point on the cylindrical surface. Required geometrical input includes a base point,
the direction of the center line measured from the base point, the length of the cylinder, and

the radius. See Figure 6.7 for an sample contact cylinder.

To input the base point and direction vector, use the commands:

point < x: number > < y: number > < z: number >

di__[ection < dx: number > < dy: number > < dz: number >

where the specified point and direction correspond to P and V in Figure 6.7. The direction
does not need to be a unit vector; the contact processors automatically normalize the direc-
tion.

To input the length and radius, use the commands:

radius < R: number >

le._n_ngth< L: number >

where the specified radius and length and correspond to R and L in Figure 6.7. The values
must be greater than zero, and have no defaults.

Chapter 6 6.3-3 Contact Algorithms

User'sGuide_ WARP3D Contact Commands _

Y

"_X

L

FIG. 6.7--Example of cylindrical contact surface

A typical set of commands to define a cylindrical contact surface is:

contact surface

surface 1 cylinder

point 5 2 3

direction -3 1 -i

radius 1.5

length 4

stiffness l. Oe8

velocity 0.i 0.i 0.!

Spherical Surface

The spherical contact surface is a full sphere in space, and requires only the center point
and the radius as input. The commands for the sphere are:

< x: number > < y: number > < z: number >

radius < R: number >

where R is a number greater than zero. There are no defaults for these values.

A typical set of commands to define a spherical contac :t surfaces is:

contact surface

surface 1 sphere

point 5 2 3

radius 1.5

stiffness l. Oe8

velocity 0.0 -0.i 0.0

Chapter 6 6.3-4 Contact Algorithms

User'sGuide-- WARP3D Contact Commands

6.3.4 Utility Options

The clear command provides an easy means to delete all contact surfaces. The syntax is:

clear

Additionally, the dump command prints the pertinent information about all of the current

contact surfaces, including the current geometry and parameter values. The printed loca-

tion of the base point for each contact surface is the current location after considering the

surface velocity and elapsed analysis time. The syntax is:

dump_

6.3.5 Notes on Multiple Contacting Surfaces

The implementation of frictionless, rigid body contact in WARP3D includes procedures to
address cases involving multiple intersecting contact surfaces; Section 6.2.3 details the in-

teraction algorithms. This allows the creation and appropriate handling of corners and oth-
er composite rigid surfaces. However, the algorithms impose some restrictions and require-
ments on contact surface definitions.

Overlapping of Contact Surfaces for Corners

The proper treatment of corners requires that the contact surfaces which form the corner

overlap slightly. Consider Figure 6.8.a, where two rectangular contact surfaces form a cor-
ner, but do not overlap. For the contact processors to return the penetrating node to the

corner, they must consider both planes. However, the node is actually only penetrating con-
tact surface 1. After the the evaluation of contact, the node moves close to the surface of

contact surface 1, but not far enough to move into contact surface 2. The node does not re-
turn to the corner in this case. With an overlap, as in Figure 6.8.b,the contact node violates

both contact surfaces, thus the contact processors return the node to the corner. The

amount of overlap depends on the stiffness of the contact planes; the overlap should be

greater than the remaining penetration after enforcement of contact.

Avoid Acute Angles in Corners

The algorithms which manage intersecting contact surfaces operate best with corners
formed at obtuse angles. Avoid internal or external corners with acute angles. See Figure

6.9 for examples of acceptable and unacceptable corners.

Potential Errors in Intersecting Rectangles with Cylinders and Spheres

The algorithms which resolve penetration of intersecting contact surfaces assume the con-

tact surfaces are planes. Large penetrations into intersecting contact surfaces which in-
clude curved surfaces, particularly curved surfaces with small radii, may cause errors in
the return location of the node. The use of small load steps, and avoidance of excess intersec-

tions between rectangles and curved surfaces, can help alleviate this problem.

6.3.6 Complete Examples

The following example is a valid contact definition which includes an example of each of the

types of contact surfaces.

contact surface

clear

surface 1 plane

Chapter 6 6.3-5 Contact Algorithms

User'sGuide-- WARP3D Contact Commands _

ii!i,!i_ii!ii!
! i_i!_i!iii:¸'_!_;iiiiiiii_!21i!i!i

(a) Co)

FIG. 6.8--Overlapping of corners; a) with no overlap, node only
returns to surface 1; b) overlap allows return of node to
corner.

, iii i i_i ¸ /

(a) (b)

FIG. 6.9--Acceptable and unacceptable corner definitions; a) corners
have obtuse angles, and are permissible; b) corners have
acute angles, which may cause problems.

point 3 5 2

point 5 4 3

point 4 6 i

depth 4

stiffness l.Oe8

velocity 0.i 0.i 0.1

surface 2 cylinder

point 5 2 3

direction -3 1 -i

radius 1.5

length 4
stiffness l. Oe8

Chapter 6 6.3--6 Contact AIgorithms

User'sGuide-- WARP3D Contact Commands

velocity 0.05 0.0 0.05

surface 3 sphere

point 5 2 3

radius 1.5

stiffness l. Oe8

velocity 0.0 -0.I 0.0

dump

Chapter 6 6.3-7 Contact Algorithms

User'sGuideD WARP3D Contact Tips _

6.4 Tips for Analyses Using Contact

Contact analyses can be very troublesome; convergence is by no means guaranteed, and

may be difficult to achieve. Also, improperly defined contact surfaces cause severe problems

and may prove formidable to find. However, a variety of solution strategies and modelling
techniques can sigrLificantly improve the likelihood of a successful analysis. This section

presents some tips and suggestions for improving the performance of contact analyses in
WARP3D.

Choosing a penalty parameter

Choosing an appropriate penalty parameter (contact s_iffness) is one of the most important
factors in the success of a contact analysis. A contact stiffness which is too small allows too

great a penetration, while a parameter which is too large causes significant convergence
problems (particularly with the preconditioned conjugate gradient solver), and degrades

the accuracy of the solution. Also, the choice of a penalty parameter depends on the materi-
al model, the element type, mesh size, the type of loading, and even the contact surface. A
few guidelines:

• The contact stiffness should be several orders of magnitude greater than the local
"stiffness _ of the structure at the point of contact. To evaluate the structural stiffness

at a node, run an analysis with a unit force at the node normal to the potential contact

surface. The local stiffness of the structure at the node is simply the force divided by
the resulting displacement. A contact stiffness many magnitudes more than this val-

ue may cause ill-conditioning and large errors in the results.

• To assess the adequacy of an appropriate penalty parameter in a new analysis, try
a small value first, then re-run the analysis several times, each time increasing the

penalty parameter. A good choice is a penalty parameter which maintains strong con-

vergence properties, but which would cause convergence problems if increased some-
what. Once a successful parameter is found, anMyses with similar properties (load-
ing, material, etc.) can use a similar value.

• Experience indicates that curved contact surfaces, such as cylinders and spheres,
need a lower contact stiffness than rectangular contact surfaces.

Convergence of the first step

Achieving convergence of contact analyses on the first ,,tep in which contact takes place can

be challenging. Oscillations may occur where contact springs force penetrating nodes com-
pletely out of contact. Without any contact to restrain them, the nodes penetrate on the next

Newton iteration, repeating the cycle and impeding convergence. To avoid this problem:

• Reduce the size of the first step in which contact occurs; this is particularly necessary
for moving contact surfaces. An effective step size for the first step with contact may

need to be one-thousandth of the step size used for the remainder of the analysis. Af-
ter the first step converges and contact initiate_ successfully, the step size can in-

crease significantly. A reduced loading for a step or two may be necessary each time
the contact surface experiences a significant sl_ _ in direction. Re-definition of the

time increment per load step provides an effecti_e means of reducing the movement

rate for a contact surface; see Section 2.9 for info_-mation on the time step parameter.

Make sure that any explicitly defined, non-zero constraints also reflect the change in
movement rate.

• Decrease the contact surface stiffness by several orders of magnitude for the first load
step with contact. Then redefine the contact surface with a much higher stiffness af-

ter a step or two.

Chapter 6 6.4-1 Contact Algorithms
_J

User's Guide _ WARP3D Background

• If the analysis contains a contact surface with a non-zero velocity, insure that the time

increment per load step is reasonable. Many convergence problems arise from inaccu-

rately specified time increments. See Section 2.9 for information on the time step pa-
rameter.

Improving general convergence

A number of techniques can improve general convergence of contact analyses. A few are
listed below:

• Take smaller computational load steps.

• Use a smaller contact stiffness.

• Analyses which contain symmetry planes are significantly more robust than similar

analyses which model the entire structure (and thus have more rigid body motion).

• Make sure that all rigid body motions are prevented using explicit constraints. Con-

tact enforcement using the penalty method is equivalent to supplying force boundary

conditions, which are typically less robust than explicit constraint boundary condi-
tions.

• If elimination of rigid body motions is not possible, try including mass in the analysis

with small time steps. The addition of inertia can help stabilize the analysis.

• If the analysis involves moving contact surfaces, then application of explicit

constraints on nodes which move along with the contact surface can improve conver-

gence significantly. See the pin-loaded C(T) specimen in the examples section for an

example.

• Incorrect specification of contact surfaces can cause hidden difficulties; see Section

6.3 for more details on contact input and possible problems.

• Turn adaptive load reduction off (adaptive offin the nonlinear solution parameters
command).

Chapter 6 6.4-2 Contact Algorithms

User'sGuide_ WARP3D Example Problems

6.5 Example Analyses Using Contact

To illustrate contact in WARP3D, the following three examples present representative

analyses which use contact surfaces. The examples include the rolling of a metal bar, crush-
ing of a pipe, and crack closure in a pin-loaded C(T) specimen.

6.5.1 Rolling of a Metal Bar

This problem simulates the crushing of a metal bar using a rigid roller. The roller, with a

3" radius, comes into contact with the 2" x 2" × 10" bar 2 inches from the end, moves down-

ward 0.5 inches, then moves along the bar at a constant height until it passes through the

other end. Figure 6.10 shows the mesh and boundary conditions for the problem, as well

as the path of the roller. The mesh contains 320 8-noded brick elements and 525 nodes, and
uses the mises material model, with E = 30000 ksi, v = 0.3, a0 = 60.0 ksi, and n = 10. The

solution uses large deformation theory, and a total of 200 load steps, with 50 load steps for
the initial crushing and 150 load steps for the rolling. The penalty stiffness of the rigid cylin-
der is 106 .

7 1 0"

FIG. 6.10--Mesh for rolling of a metal bar. Shaded planes indicate
planes of nodes which are constrained. Arrows indicate

path of cylinder during analysis.

In order to start the contact smoothly and avoid ini ;ial convergence problems, the roller

moves down 10 -5 inches per step over the first two steps, then 10 -2 inches per step until

step 50. After 50 steps, the total downward displacemeat of the roller is 0.48002 inches. The
roller stops for a load step, then moves across the bar, starting at a rate of 10 -3 inches per

step for steps 52 and 53, and at 0.05 inches per step for steps 54 to 200. Figure 6.11 shows

deformation plots at several points during the analysis, and portions of the analysis input.
Three load steps require adaptive step reduction to achieve convergence of the Newtons it-
erations.

6.5.2 Crushing of a Pipe

This example is a large deformation analysis of a pipe _.Tushed inside a rigid box. The plane
strain model uses four contact planes; a horizontal contact plane descends from above the

Chapter 6 6.5-1 Contact Algorithms

User's Guide u WARP3D Example Problems

(a)

(b)

(c)

(d)

c

c cylinder moves downwards, _-

c

contact planes

surface 1 cylinder

point 2 5.000 -10
direction 0 0 1

length 20

radius 3.0

stiffness 10.0e5

rate 0.0 -.01 0.0

nonlinear analysis parameters

time step .001

extrapolate off

compute displacements for loading test step 1-2

nonlinear analysis parameters

time step 1.0

compute displacements tor loading test step 3-50

c

c cytinderstops,--_

¢

contact planes

dear

surface 1 cylinder

point 2 4.51998 -10
direction 0 0 1

length 20
radius 3.0

stiffness 10.0e5

rate 0.0 0.0 0.0

compute displacements for loading test step 51

c

c =cytinder moves horizontally

c

contact planes
clear

surface 1 cylinder

point 2 4.51998-10

direction 0 01

length 20
radius 3.0

stiffness 10.0e5

rate 0.01 0.0 0.0

nonlinear analysis parameters

time step .1

compute displacements for loading test step 52 - 53

nonlinear analysis parameters

time step 5.0

compute displacements for loading test step 54- 200

(e)

FIG. 6.11--Deformed shapes from rolling of a metal bar. Deformed

shapes shown at (a) step 50, (b) step 70, (c) step 150, and (d)

step 200. Part (e) shows a portion of the input file for this

analysis.

pipe, while the side and bottom planes remain stationary. As the planes crush the pipe, the

initially circular pipe transforms to a rectangular shape. The outside radius of the pipe is

5 inches, and the wall is i inch thick. The model, constructed with 186 8-noded elements

and 496 nodes, uses a mises material model, with E = 30000 ksi, v = 0.3, a0 = 60.0 ksi, and

n = 10. The top plane translates down 10 -6 inches the first step, then 2.5 × 10 -3 inches per

step for the remainder of the analysis, providing a 5 inch height reduction after 2000 load

steps. Fixed constraints on the topmost nodes travelling with the moving contact plane help

Chapter 6 6.5-2 Contact Algorithms

User's Guide m WARP3D Example Problems

FIG. 6.12mDeformed shapes from crushing of a pipe. Deformed shapes

shown at 500 step increments between 0 and 2000 load steps.

stabilize the model. Figure 6.12 displays a series of deformed shapes at various stages of
the analysis.

6.5.3 Crack Closure in a Pin-Loaded C(T) Specimen

Finite element analyses of fracture specimens typically do not include the actual boundary
conditions as applied in experiments. For instance, experimental procedures dictate that

loading of a compact tension, C(T), specimen use pins, while finite element analyses of the
specimen usually load a single line of nodes or fill in the pin hole with linear elastic ele-

ments. While in general the discrepancies between e)perimental and modelled boundary
conditions cause only minor differences in the crack fr)nt results, there are cases in which

the true boundary conditions can cause significant diTerences.

To demonstrate the use of contact surfaces providecl in WARP3D in the analysis of frac-
ture specimens, this section describes the large deformation, plane strain analysis of a pin-

loaded C(T) specimen, where a contact cylinder explicitly models the pin loading. Further-
more, the analysis includes both cyclic tensile and compressive loading, causing crack

closure. To model crack closure, a rectangular contact surface congruent with the symmetry

plane prevents penetration of the crack face. The model has a width W of 1.9685 inches,
and a crack length to width (a/W) ratio of 0.6. An initially blunt notch with a radius of
7.6 x 10 -4 inches allows significant blunting at the cra:k tip as deformation increases. The

Chapter 6 6.5-3 Contact Algorithms

User'sGuidem WARP3D Example Problems

pin has a radius of 0.17 inches, while the radius of the hole in the C(T) specimen is 0.18
inches. The model contains 435 8-noded elements and 1000 nodes, and uses a mises materi-

al model with E = 30000 ksi, v = 0.3, a0 = 60.0 ksi, and n = 10. Figure 6.13 illustrates the

mesh, and Figure 6.14 shows the deformation and stress contours of the model at several

_oints during the analysis.

Radius of Pin:
0.17"

\

I

Radius of Hole:
0.18"

1.97"

J

Rigid C¢ Plane

v

1.18"

_-_0.78" _

FIG. 6.13--Mesh for pin-loaded C(T) analysis.

To initiate contact, the pin moves only 5.0 x 10 -s inches upwards during the first step.

On step 2, the rate increases to 5.0 x 10 -4 inches per load step. This continues until the spec-

imen experiences a total upward displacement of 0.0138 inches at step 30, after which the
pin moves downwards. The downward movement begins at 5.0 x 10 --s inches for step 31,
then increases to 1.0 x 10 -4 inches per step. To assist computational stability during the

initial loading and unloading of the specimen, explicit constraints on the nodes at the top

of the loading hole ensure model displacement commensurate with the pin displacement.
This is crucial in the unloading section between steps 31 and 61, where an analysis which

does not include the explicit constraints requires a loading rate several orders of magnitude

smaller. After step 61, the analysis moves into compressive loading, at which point the ex-

plicit constraints are removed. Once again, to ensure smooth convergence with the initial
contact, the first step uses a displacement of 5.0 x 10 -8 inches, while movement of 5.0 x 10-4

inches per step ensues afterwards. The loading continues until step 130, achieving a total
downwards displacement of 0.032 inches. Crack closure initiates on step 75, and by step

130, the crack closes almost completely except for a small region near the crack tip.

A selected portion of the input file follows:

constraints
*input from file 'constraints'

33 34 v 5.0e-8
nonlinear analysis parameters

time step 0.0001
extrapolate off

C

Chapter 6 6.5-4 Contact Algorithms

User'sGuidem WARP3D Example Problems

Step 30:
maximum

upward
displacement

\

Step 60:
return to
initial

position

m

,x

i

Step 130:
maximum
downward

displacement

FIG. 6.14--Deformed shapes for pin-loaded C(T) analysis. Stress
contours range from 0 to 120 ksi in 20 ksi increments.

contact surface
surface 1 cylinder

point -1.181 .75322844 -1
direction 0 0 1
length 2
radius .17
stiffness 10.0e5
rate 0.0 0.0005 0.0

c
compute displacements for loading test step 1
c
nonlinear analysis parameters

time step 1.0
constraints
*input from file 'constraints'

33 34 v .0005

Chapter 6 6.5-5 Contact Algorithms

User'sGuidem WARP3D Example Problems

C

compute displacements for loading test step 2-30
c
constraints
*input from file 'constraints'

33 34 v -5.0e-8
contact surface

surface 1 cylinder
point -1.181 .76772849 -1
direction 0 0 1
length 2
radius .17
stiffness 10.0e5
rate 0.0 -0.0005 0.0

nonlinear analysis parameters
time step 0.0001

c
compute displacements for loading test step 31
c
constraints
*input from file 'constraints'

33 34 v-.0005
nonlinear analysis parameters

time step 1.0
c
compute displacements for loading test step 32-60

C

constraints
*input from file 'constraints'
contact surface

surface 1 cylinder
point -1.181 .7245 -1
direction 0 0 1

length 2
radius. 17
stiffness 10.0e5
rate 0.0 -0.0005 0.0

surface 2 plane
point -10 0 -10
point -10 0 10
point 10 0 -10
stiffness 10.0e5

nonlinear analysis parameters
time step 0.0001

c
compute displacements for loading test step 61
c
nonlinear analysis parameters

time step 1.0
c
compute displacements for loading test step 62-130

Chapter 6 6.5-6 Contact Algorithms

Appendix A

Patran Results File Formats

Figures in this Appendix provide skeletal Fortran programs to read Patran nodal results

files. They provide a starting point for development of more advanced programs.

Fig. A.1

Fig. A.2

Fig. A.3

Fig. A.4

read a binary file of nodal strain/stress results

read a binary file of nodal displacements, velocities, accelerations, internal
forces

read an Ascii file of nodal strain/stress results

read an Ascii file of nodal displacements, velocities, accelerations, internal
forces

Appendix A A.1 Patran File Formats

User'sGuide-- WARP3D

o

9400

9500

implicit integer (a-z)

parameter(maxnod=20000, maxcols=50)

double precision nodval(maxcols,maxnod)

real rtemp, pvals(maxco!s)

dimension title(80)

character * 80 binnam

terrain = 5

termot = 6

binfil = i0

write(termot,*)

write(termot,*) '

write(termot,*) '>> binary strain/stress processing program'

write(termot,*) ' '

write(termot,9400) ' > name of results file? '

read(termin,9500) binnam

open(unit=binfil,file=binnam, status='old',recl=3OOO,form='unformatted ')

write(termot,*) ' > file opened ok'

read the binary results file of nodal strains/stresses.

patran results are single precision, read as single and

store as double.

read(binfil) title,nnode,ii,rtemp,ii,nvals

read(binfil) title

read(binfil) title

write(termot,*) '>> number of nodes: ',n_node

do node = i, nnode

if (mod(node,200) .eq. 0) then

write(termot,*) ' > processing node: ',node

end if

read(binfil) ii, (pvals(jj),jj=l,nvals)

nodval(l:nvals,node) = pvals(l:nvals)

end do

close(unit=binfil)

call a routine to do something with the nodal values

of stress/strain.

call process(nodval, nnode, maxcols, termot)

write(termot,*) '>> processing completed'

write(termot,*) '>> normal termlnation'

call exit

format(a,$)

format(a80)

end

subroutine process (values, nnode, nrow, termot)

implicit integer (a-z)

double precision values(nrow, nnode)

return

end

FIG. A. 1--Fortran program to read Patran binary file of nodal strain or stress results.

Appendix A A.2 Patran File Formats

User'sGuide-- WARP: ID

c

9400

9500

implicit integer (a-z)

parameter(maxnod=20000)

double precision x(maxnod), y(maxnod), z(maxnod)

real xval, yval, zval

dimension title(80)

character * 80 binna/n

termin = 5

termot = 6

binfil = i0

write(termot,*)

write(fez-mot,*)

write(termot,*) >> binary node value pocessing program'

write(termot,*) '

write(termot,9400) ' > name of results file? '

read(termin,9500) binnam

open(unit=binfil,file=binnam, status='old',recl=3(OO,form='unformatted')

write(termot,*) ' > file opened ok'

read the binary results file of nodal values.

read x, y, z components, patran results are single

precision, read as single and store as double.

read(binfil} title,nnode,ii,rtemp, ii,nvals

read(binfil) title

read(binfil) title

write(termot,*) '>> number of nodes: ',nnode

do node = i, nnode

read(binfil) ii, xval, yval, zval

x(node) = xval

y(node) = yval

z(node} = zval

end do

close(unit=binfil)

call a routine to do something with the nodal values

call process(x, y, z, nnode, termot)

write(tel'mot, t) '>> processing completed'

write(termot,*) '>> normal termination'

call exit

format(a,$)

format(aSO)

end

subroutine process (x, y, z, nnode, termot)

implicit integer (a-z)

double precision x(*), y(*), z(*)

return

end

FIG. A.2--Fortran program to read Patran binary file of nodal displacements,
velocities, accelerations or internal forces.

Appendix A A.3 Patran File Formats

' User's Guide -- WARP3D

c

8900

9000

9400

9500

9600

implicit integer (a-z)

parameter(maxnod=20000

double precision nodval

character * 80 asciinam

maxcols=50)

maxcols,maxnod), val3

line

terrain = 5

termot = 6

asciifil = i0

write(terrnot,*) ' '

write(termot,*) '

write(termot,*) '>> ascli strain/stress processing program'

write(termot,*) ' '

write(termot,9400) ' > name of results file? '

read(termin, 9500) asciinam

open(unit=asciifil,file=asciinam, status='old')

write(termot,*) ' > file opened ok'

skip past the header lines of neutral file.

get number of nodes and number of result values

for each node.

read(asciifil,9500) line

read(asciifil,9600) nnode, ival2, val3, ival4, nvals

read(asciifil,8900) line

read(asciifil,8900) line

read values for each node into a double array.

write(termot,*) ' > reading nodal results file..'

do node = i, nnode

read(asciifil,9000) ii, (nodval(_j,node),jj=l,nvals)

end do

close(unit=asciifil)

write(termot,*) '>> nodal results file read'

call a routine to do something with the nodal values

of stress/strain.

call process(nodval, nnode, maxcols, terrnot)

write(termot,*) '>> processing completed'

write(termot,*) '>> normal termination'

call exit

format(al)

format(i8, (5e13.7))

format(a,$)

format(a80)

format(2i5,el5.6,2i6)

end

subroutine process (values, nnode, nrow,

implicit integer (a-z)

double precision values(nrow,nnode)

return

end

termot)

FIG. A.3--Fortran program to read Patran ASCII file of nodal strain or stress results.

Appendix A A.4 Patran File Formats

User'sGuide-- WARP,_D

c

8900

9000

9400

9500

9600

implicit integer (a-z)

parameter(maxnod=20000)

double precision x(maxnod), y(maxnod), z(maxnod)

character * 80 asciinam, line

terrain = 5

termot = 6

asciifil = I0

write{termot,*) ' '

write(termot,*) ' '

write(termot,*) '>> ascii node value pocessing program'

write(termot,*) ' '

write{termot,9400) ' > name of results file? '

read(termin, 9500) asciinam

open(unit=asciifil,file=asciinam, status='old')

write(termot,*) ' > file opened ok'

skip past the header lines of neutral fil_.

get number of nodes and number of result zalues

for each node.

read(asciifil,9500) line

read(asciifil,9600) nnode, ival2, val3, ival4, nv_is

read(asciifil,8900) line

read(asciifil,8900) line

read values for each node into a double array.

write(termot,*) ' > reading nodal results file..'

do node = i, nnode

read(asciifil,9000) ii, x(ii), y(ii), z(ii)

end do

close(unit=asciifil)

write(termot,*} '>> nodal results file read'

call a routine to do something with the nodal values

call process(x, y, z, nnode, termot)

write(termot,*) '>> processing completed'

write(termot,*) '>> normal termination'

call exit

format(al)

format(i8, (5e13.7))

format(a,$)

format(a80)

format(2i5,e!5.6,2i6)

end

subroutine process (x, y, z, nnode, termot)

implicit integer (a-z)

double precision x(*), y(*), z(_)

return

end

FIG. A.4--Fortran program to read Patran ASCII file of nodal displacements,
velocities, accelerations, or internal forces.

Appendix A A.5 Patran File Formats

Appendix B

References

[1]

[2]

[3]

[4]

[5]

[61

[7]

[8]

[9]

[10]

[11]

[12]

Amestoy, H.D., Bui,, and Labbens, "On the Definition of Local Path Independent
Integrals in 3-D Crack Problems," Mechanics Research Communications, Vol. 8,
1981, pp. 231-236. t

Aravas, N., "On the Numerical Integration of a Class of Pressure-Dependent Plas-
ticity Models," International Journal for Numerical Methods in Engineering,
Vol. 24, 1987, pp. 1395-1416. t

Asaro, R. J., "Crystal Plasticity," Journal of Applied Mechanics, Vol. 50, 1984, pp.
1-12.t

Atluri, S. N. "On Constitutive Relations at Finite Strain: Hypo-Elasticity and Elas-

to-Plasticity with Isotropic and Kinematic Hardening" Computer Methods in
Applied Mechanics and Engineering, Vol. 43, 1984, pp. 137-171. t

Bakker, A., "The Three-Dimensional J-Integral: An Investigation into Its Use for
Post-Yield Fracture Assessment," WTHD No. 167, Laboratory for Thermal
Power Engineering, Delft University of Technology, Mekelweg 2, 2628 CD,
Delft., 1984.§

Bathe, K. J. Finite Element Procedures in Engineering Analysis. Prentice-Hall, Inc.
Englewood-Cliffs, N.J., 1982. t

Biffle J.H., "Indirect Solution of Static Problems Using Concurrent Vector Process-
ing Computers," Parallel Computations and their Impact on Mechanics, ed. by

A.K. Noor, American Society of Mechanical Engineers, New York, 1987, pp.
317-330. t

Biffle, J. H., and M. L. Blanford, "JAC2D- A Two-Dimensional Finite Element

Computer Program for the Nonlinear Quasi-Static Response of Solids with the
Conjugate Gradient Method," SAND93-1891, Sandia National Laboratories,
Albuquerque, NM., 1994. §

Biffie, J. H., and M. L. Blanford, "JAC3D- A Three-Dimensional Finite Element

Computer Program for the Nonlinear Quasi-Static Response of Solids with the
Conjugate Gradient Method," SAND87-1305, Sandia National Laboratories,
Albuquerque, NM., 1993. §

Budiansky, B., and Rice, J., "Conservation Laws and Energy Release Rates," Jour-
nal of Applied Mechanics, Vol. 40, 1973, pp. 201-203.

T

Carey G.F., and Jiang B., "Element-By-Element Linear and Nonlinear Solution
Schemes," Communications in Applied Numerical Methods, Vol. 2, No. 2,
March-April 1986, pp. 145-153. t

Carpenter, W.C., Read, D.T., and Dodds, R.H., "Comparison of Several Path Inde-
pendent Integrals Including Plasticity Effects," International Journal of Frac-
ture, Vol. 31, 1986, pp. 303-323. +

Appendix B B.1 References

User'sGuide-- WARP3D

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

Cherepanov, G.P., "The Propagation of Cracks in a Continuous Medium," Journal of
Applied Mathematics and Mechanics, Vol. 31, 1967, pp 503-512.*

Chu, C. C. and Needleman, A., "Void Nucleation Effects in Biaxially Stretched
Sheets," Journal of Engineering Materials and Technology, Vol. 102, 1980, pp.
249-256.*

Concus P., Golub G.H., and O'Leary D.P., "A Generalized Conjugate Gradient Meth-

od for the Numerical Solution of Elliptic Partial Differential Equation," Sparse
Matrix Computations, ed. J.R. Bunch and D.J.Rose, Academic Press, New York,
1965, pp. 307-322. t

Cook R. D., Malkus, D. S., and Plesha, M. E., "Concepts and Applications of Finite
Element Analysis," Third Ed., John Wiley & Sons, Inc., New York NY, 1989. t

Crisfield, M.A., Nonlinear Finite Element Analys_s of Solids and Structures - Volume
1:Essentials, John Wiley & Sons Ltd., 1991. T

Cuitino, A. and Ortiz, M., "A Material-Independent Method for Extending Stress
Update Algorithms from Small-Strain Plasticity to Finite Plasticity with Multi-
plicative Kinematics," Engineering Computations, Vol. 9, 1992, pp. 437--451. t

de Lorenzi, H.G., "On the Energy Release Rate and the J-integral for 3-D,"Interna-
tional Journal of Fracture, Vol. 19, 1982, pp. 183-193. t

Dienes, J. IL, "On the Analysis of Rotation and Stress Rate in Deforming Bodies,"
Acta Mechanica, Vol. 32, 1979, pp. 217-232. t

Doghri, I., Muller, A., and Taylor, R. L. "A General _"aree-Dimensional Contact Pro-
cedure for Implicit Finite Element Codes," Engineering Computations, Vol. 15
no. 2, 1998, pp.233-259.

Dodds, R., "Numerical Techniques for Plasticity Computations in Finite Element

Analysis," Computers and Structures, Vol. 26, No. 5, 1987, pp. 767-779. t

Eshelby, J.D., "Energy Relations and the Energy l_[omentum Tensor in Continuum
Mechanics," in Inelastic Behavior of Solids, M.F. Kanninen, et al. (eds), Mc
Graw-HiU, NY, 1970. t

Flanagan, D. P. and Taylor, L. M., "An Accurate Numerical Algorithm for Stress In-

tegration with Finite Rotations," Computer Methods in Applied Mechanics and
Engineering, Vol. 62, 1987, pp. 305-320.*

Flanagan D.P., and Taylor L.M., "Structuring Data for Concurrent Vectorized Pro-
cessing in a Transient Dynamics Finite Eleme:lt Program," Parallel Computa-
tions and their Impact on Mechanics, ed. by A.t_. Noor, American Society of Me-
chanical Engineers, New York, 1987, pp. 291-299. t

Golub G.H., and Van Loan C.F., "Matrix Computations," The Johns Hopkins Uni-
versity Press, Baltimore Maryland, 1983.

Goudreau, G. L. and Hallquist, J. O., "Recent Developments in Large-Scale
Lagrangian Hydrocode Technology," ComputeT Methods in Applied Mechanics
and Engineering, Vol. 33, 1982, pp. 725-757. t

Green, A. E. and Naghdi, P. M., "A General Theory of an Elastic-plastic Continuum.
Archives of Rational Mechanics Analysis, Vol. 18, 1965, pp. 251-281. t

Appendix B B.2 References

User'sGuide-- WARP3D

[29] Gurson, A. L., "Continuum Theory of Ductile Rupture by Void Nucleation and
Growth: Part I- Yield Criteria and Flow Rules for Porous Ductile Media," Jour-

nal of Engineering Materials and Technology, Vol. 99, 1977, pp. 2-15. t

[30] Hallquist, J. O., "NIKE 2-D - A Vectorized, Implicit, Finite Deformation, Finite-
Element Code for Analyzing the Static and Dynamic Response of 2-D Solids,"
Lawrence Livermore Laboratory Report UCRL-52678, 1984. §

[31] Hallquist, J. O., "NIKE 3-D - A Vectorized, Implicit, Finite Deformation, Finite-
Element Code for Analyzing the Static and Dynamic Response of 3-D Solids."
Lawrence Livermore Laboratory Report UCID-18822, 1984. §

[32] Hancock, J., and Cowling, M., "Role of Sate of Stress in Crack-Tip Failure Pro-
cesses," Metal Science, Aug.-Sept., 1980, pp. 292-304. t

[33] Healy, B., Pecknold, D. A. and Dodds, R., "Applications of Parallel and Vector Algo-
rithms in Nonlinear Structural Dynamics Using the Finite Element Method,"
Civil Engineering Studies, SRS No. 571, UILU-ENG-92-2011, University of Il-
linois, Urbana, Illinois, 1992.§

[34] Hellen, T.K., "On the Method of Virtual Crack Extension," International Journal for
Numerical Methods in Engineering, Vol. 9, 1975, pp. 187-207. t

[35] Hibbitt, Karlsson & Sorensen, Inc., ABAQUS Theory Manual, Version 5.3, Provi-
dence R.I., 1993. §

[36] Hibbitt, Karlsson & Sorensen, Inc.,ABAQUS-Explicit Theory Manual, Version 5.2,
Providence R.I., 1992. §

[37] Hinton, E, Rock, T., and Zienkiewicz, O. C., "A Note on Mass Lumping and Related

Processes in the Finite Element Method," Earthquake Engineering and Struc-
tural Dynamics, Vol. 4, No. 3, 1976, pp 245-249. T

[38] Hoger, A. and Carlson, D. E., "Determination of the Stretch and Rotation in the Po-
lar Decomposition of the Deformation Gradient," Quarterly of Applied mathe-
matics, Vol. 42, 1984, pp. 113-117. t

[39] Hughes, T.J.R., "Stability, Convergence, and Growth and Decay of Energy of the Av-
erage Acceleration Method in Nonlinear Structural Dynamics," Computers and
Structures, Vol. 6, 1976, pp. 313-324. t

[40] Hughes, T. J. "Generalization of Selective Integration Procedures to Anisotropic
and Nonlinear Media," International Journal for Numerical Methods in Engi-

neering, Vol. 15, 1980, pp. 1413-1418. t

[41] Hughes, T. J. and Winget, J., "Finite Rotation Effects in Numerical Integration of
Rate Constitutive Equations Arising in Large-Deformation Analysis," Interna-
tional Journal for Numerical Methods in Engineering, Vol. 15, 1980, pp.
1862-1867. t

[42] Hughes, T. J., Levit, I., and Winger, J. M., "An Element-By-Element Solution Algo-
rithm for Problems of Structural and Solid Mechanics," Computer Methods in

Applied Mechanics and Engineering, Vol. 36, 1983, pp. 241-254. t

[43] Hughes T.J.R., Ferencz R.M., and Hallquist J.O., "Large--scale Vectorized Implicit
Calculations in Solid, Mechanics on a Cray X-MP/48 Utilizing EBE Precondi-

tioned Conjugate Gradients," Computer Methods in Applied Mechanics and En-
gineering, Vol. 61, 1987, pp. 215-248. t

Appendix B B.3 References

User'sGuide-- WARP3D

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

Hughes T.J.R., The Finite Element Method. Prentice-Hall, Englewood-Cliffs, New
Jersey, 1987. t

Hutchinson, J., "Singular Behavior at the End of a Tensile Crack in a Hardening
Material," Journal of the Mechanics and Physics of Solids, Vol. 16, 1968, pp.
13-31. t

Jaumann, G. "Geschlossenes System Physikalischer Und Chemisher Differential-

gesefze," Sitz Zer. Akad. Wiss. Wein, (IIa) 120, 1911, pp. 385. t

Johnson, G. C. and BAr-mAnn, D. J., "A Discussion of Stress Rates in Finite De-

formation Problems," International Journal fvr Solids and Structures, Vol. 20,
1984, pp. 725-737. t

Keppel, M. and Dodds, R. H., "Improved Numerical Techniques for Plasticity Com-
putations in Finite-Element Analysis," Computers and Structures, Vol. 36, No.
1, 1990, pp. 183-185. t

Key, S. W. and Krieg, R. D., "On the Numerical Implementation of Inelastic Time
Dependent and Time Independent, Finite Strain Constitutive Equations in

Structural Mechanics," Computer Methods in Applied Mechanics and Engineer-
ing, Vol. 33, 1982, pp. 439-452. t

Kishimoto, K., Aoki, S., and Sakata, M., "On the Path Independent i-Integral,"
Engineering Fracture Mechanics, Vol. 13, 1980, pp. 841-850. t

Kojic, M. and Bathe, I_ J., "Studies of Finite-element Procedures: Stress Solution of

a Closed Elastic Strain Path with Stretching and Shearing Using the Updated
Lagrangian Jaumann Formulation," Computers and Structures, Vol. 26, 1987,
pp. 175-179.*

Lee, E. H., "Elastic-Plastic Deformation at Finite Strain," Journal of Applied Me-
chanics, Vol. 36, 1969, pp. 1-6. t

Knowles, J., and Sternberg, E., "On a Class of Conservation Integrals," Archives of
Rational Mechanics Analysis, Vol. 44, 1972, pp. 187-211. t

Krieg, R. D. and Key, S. W., "Implementation of a Time Independent Plasticity
Theory into Structural Computer Programs," In Constitutive Equations in Vis-
coplasticity: Computational and Engineering Aspects, AMD-20 (Edited by J. A.
Stricldin and K. J. Saczalski), ASME, New York, 1976, pp. 125-138. t

Li, F.Z., Shih, C.F., and Needleman, A., "A Comparison of Methods for Calculating
Energy Release Rates," Engineering Fracture Mechanics, Vol. 21, (1985),
405-421. t

Mackenzie, A., Hancock, J.,and Brown, D., "On the Influence ofState of Stresson

Ductile Fracture Initiationin High Strength Steels,"Engineering Fracture Me-
chanics,Vol.9, 1977, pp. 167-188.*

Malvern, L.,An Introduction to the Mechanics of Continuous Media. Prentice-Hall,
Englewood-Cliffs, New Jersey, 1969.t

Marsden, J. E.. and Hughes, T. J. R., Mathematical Foundations of Elasticity. Pren-
tice-Hall, Englewood-Cliffs, New Jersey, 1983. t

McCalpin, J. D., "Memory Bandwidth and Machine Balance in Current High Perfor-
mance Computers," Invited for submission tc IEEE Technical Committee on
Computer Architecture Newsletter. To appear December 1995.

Appendix B B.4 References

User'sGuide-- WARP3D

[60] Moran, B., and Shih, C.F., "A General Treatment of Crack Tip Contour Integrals,"
International Journal of Fracture, Vol. 35, 1987, pp. 295-310. t

[61] Moran, B., and Shih, C.F., "Crack Tip and Associated Domain Integrals from Mo-
mentum and Energy Balance," Engineering Fracture Mechanics, Vol. 27, 1987,

pp. 615-642. t

[62] Moran, B., Ortiz, M., and Shih, C. F., "Formulation of Implicit Finite Element Meth-

ods for Multiplicative Finite Deformation Plasticity," International Journal for
Numerical Methods in Engineering, Vol. 29, 1990, pp. 483-514. t

[63] Nagtegaal, J. C. Parks, D. M., and Rice, J. R., "On Numerically Accurate Finite Ele-
ment Solutions in the Fully Plastic Range," Computer Methods in Applied Me-
chanics and Engineering, Vol. 4, 1974, pp. 153-178. t

[64] Nagtegaal, J. C. and de Jong, J. E., "Some Computational Aspects of Elastic-Plas-
tic, Large Strain Analysis," International Journal for Numerical Methods in En-

gineering, Vol. 12, 1981, pp. 15-41. t

[65] Nagtegaal, J. C., "On the Implementation of Inelastic Constitutive Equations with

Special Reference to Large Deformations," Computer Methods in Applied Me-
chanics and Engineering, Vol. 33, 1982, pp. 221-245. t

[66] Nagtegaal, J. C. and Veldpaus, F. E., "On the Implementation of Finite Strain Plas-
ticity Equations in a Numerical Model," In Numerical Analysis of Forming Pro-
cesses (edited by J.F. Pittman, O. C. Ziekiewicz, R. D. Wood and J. M. Alexander),
p. 351. John Wiley and Sons, New York, 1984. t

[67] Nakamura, T., Shih, C., and Freund, L., "Analysis of Dynamicaly Loaded SE(B)
Ductile Fracture Specimen," Engineering Fracture Mechanics, Vol. 25, 1986, pp.
323-339. t

[68] Needleman, A. and Tvergaard, V., "An Analysis of Ductile Rupture Modes at a Crack
Tip," Journal of Mechanics and Physics of Solids, Vol. 35, 1987, pp. 151-183. t

[69] Newmark N.M., "A Method of Computation for Structural Dynamics," Journal of
the Engineering Mechanics Division, ASCE, Vol. 32, No. EM3, 1959, pp. 67-94."

[70] Nikishkov, G.P. and Atluri, S.N., "Calculation of Fracture Mechanics Parameters for
an Arbitrary Three-Dimensional Crack, by the 'Equivalent Domain Integral'
Method," International Journal for Numerical Methods in Engineering, Vol. 24,

1987, pp. 1801-1827. t

[71] Panontin, T., and Sheppard, S., '_he Relationship Between Constraint and Ductile
Fracture Initiation as Defined by Micromechanical Analyses," Fracture Me-

chanics: 26th Volume, ASTM STP1256, W. Reuter, J. Underwood, J. Newman,
Eds., American Society for Testing and Materials, Philadelphia, 1995"

[72] Parks, D.M., "The Virtual Crack Extension Method for Nonlinear Material Behav-
ior," Computer Methods in Applied Mechanics and Engineering, Vol. 12, 1977,
pp. 353-364. t

[73] Pinsky, P. M., Ortiz, M. and Pister, K. S. "Numerical Integration of Rate Constitu-
tive Equations in Finite Deformation Analysis," Computer Methods in Applied
Mechanics and Engineering, Vol. 40, 1983, pp. 137-158. t

[74] Rice, J., and Rosengren, G.F., "Plane Strain Deformation Near a Crack Tip in a Pow-
er Law Hardening Material," Journal of Mechanics and Physics of Solids, Vol.

16, 1968, pp. 1-12. t

Appendix B B.5 References

User'sGuide-- WARP3D

[75]

[76]

[77]

[78]

[79]

[8O]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

Rice, J. "A Path Independent Integral and the Approximate Analysis of Strain Con-
centration by Notches and Cracks," Journal ofApplied Mechanics, Vol. 35, 1968,
pp. 379-386. t

Rice, J., and Tracey, D., 'On the Ductile Enlargement of Voids in Triaxial Stress
Fields," Journal of Mechanics and Physics of Solids, Vol. 17, 1969, pp. 201-217.t

Roy, S., Fossum, A. F., and Dexter, R. J., "On the Use of Polar Decomposition in the
Integration of Hypo-Elastic Constitutive Law_," International Journal of Engi-
neering Science, Vol. 30, 1992, pp. 119-133. t

Rubinstein, R. and Atluri, S. N., "Objectivity of Incremental Constitutive Equations
Over Finite Time Steps in Computational Fimte Deformation Analysis," Com-

puter Methods in Applied Mechanics and Engineering, Vol. 36, 1983, pp.
277-290.*

Schoeberle, D.F., and Belytschko, T., "On the Unconditional Stability of an Implicit
Algorithm for Nonlinear Structural Dynamics_" Journal of Applied Mechanics,
Vol. 42, 1975, pp. 865-869. t

Schreyer H.L., Kulak R.F., and Kramer J.M., "Accurate Numerical Solutions for
Elastic-Plastic Models," Journal of Pressure Vessel Technology, Vol. 101, 1979,
pp. 226-234. t

Shih, C.F., Moran, B., and Nakamura, T. "Energy Release Rate Along a Three-Di-
mensional Crack Front in a Thermally Stressed Body," International Journal of
Fracture, Vol. 30, 1986, pp. 79-102. t

Simo, J.C. and Taylor, R.L., "Consistent Tangent Operators for Rate Independent
Elastoplasticity," Computer Methods in Appl&d Mechanics and Engineering,
Vol. 35, 1985, pp. 101-118. t

Simo, J. C. and Ortiz, M., "A Unified Approach to Finite Deformation Elasto-Plastic

Analysis Based on the Use of Hyper-elastic Constitutive Equations," Computer
Methods in Applied Mechanics and Engineering, Vol. 49, 1985, pp. 221-245. t

Simo, J. C. and Hughes, T. J. R. Elastoplasticity an, t Viscoplasticity: Computational
Aspects. Stanford University, 1988.§

Taylor, L. M. and Flanagan, D. P., "PRONTO 2D, A Two-Dimensional Transient

Solid Dynamics ProgTam," SAND86-0594, SanJia National Laboratories, Albu-
querque, NM., 1987. 9

Taylor, L. M. and Flanagan, D. P., "PRONTO 3D, ,k Three-Dimensional Transient
Solid Dynamics Program," SAND87-1912, San lia National Laboratories, Albu-
querque, NM., 1989.§

Tvergaard, V., "Influence of Void Nucleation on Ductile Shear Fracture at a Free

Surface," Journal of Mechanics and Physic._" of Solids, Vol. 30, 1982, pp.
399--425. t

Tvergaard, V., "Material Failure by Void Growth t _ Coalescence," Advances in Ap-
plied Mechanics, Vol. 27, 1990, pp. 83-151. t

Wang, Y., "A Two-Parameter Characterization of Elastic-Plastic Crack Tip Fields
and Applications to Cleavage Fracture," Ph.D. Dissertation, Dept. of Mechani-
cal Engineering, MIT, 1991. §

Appendix B B.6 References

User'sGuide-- WARP3D

[90]

[91]

[92]

Zienkiewicz, O. C. and Taylor, R. L. The Finite Element Method. Fourth Edition, Vol-
ume 1, Basic Formulation and Linear Problems. McGraw-Hill, London, 1990. _

Zienkiewicz, O. C. and Taylor, R. L. The Finite Element Method. Fourth Edition, Vol-
ume 2, Solid and Fluid Mechanics, Dynam, ics and Nonlinearity. McGraw-Hill,

London, 1991. t

Zhong, Z., Finite Element Procedures fot Contact-ImpactProblems, Oxford Universi-

ty Press, New York, 1993

* Available for purchase from national Technical Information Service, Springfield, VA
22161.

t Available from public technical libraries.

_+Copies are available from U.S. Government Printing Office, Washington, D.C.

20402. ATTN: Regulatory Guide Account.

§ Available for purchase from vendor.

Appendix B B.7 References

Appendix C

Patran-to-WARP3D Translators (patwarp)

C.1 Introduction

This appendix describes the procedures to communicate data between the Patran modeling/
post-processing code and the WARP3D analysis code. We assume that the reader is familiar
with the use of both Patran and WARP3D.

Figure C.1 illustrates the general flow of data between the two codes. Patran is used to

create interactively the geometric model and the finite element model. One form of output from

Patran is denoted the "neutral file" (have Patran produce a 2.5 version neutral file for the mod-
el). This is a sequential (ASCII) file ofhne images that describes essential features of the finite

element model in a manner independent of any specific analysis system. After building the fi-

nite element model, the user requests that Patran create the neutral file. The user initiates

the program denotedpatwarp in Figure C. 1. This interactive program is a"forward translator."
It reads the neutral file and produces an input file for WARP3D. The input file for WARP3D

generally requires minor changes and additions by the user to include additional information,

e.g. material properties, solution parameters might need to be added. Any text editor available
on the computer system may be employed to make the required changes to the input file. The

modified i'fie should then be suitable for input to WARP3D to perform the analysis.

PATRAN has many features for post-processing of the analysis results. Analysis result.,
from WARP3D (displacements, strains, stresses, etc.) are written to Patran compatible file,

displ, stresses strains

T t l

i.
i velocities I

Patran Compatible Files

WAR,_3D

Text Editor

WARP3D
Input

WAPP3D
Output

Figure C.1

Appendix C C.1 patwarp

-- User's Guide _ WARP3D

at the user's request. Each of these results files contains the strains, stresses, displacements,
etc. for a single load step. The file format can be either formatted or unformatted (binary) as

directed in the output request given to WARP3D (refer to Section 2.11.2). A file written with
the formatted option can be examined with a text editor but the structure of the file is not readi-

ly discerned by the user. A binary file is a sequential, unformatted data file. It cannot be ex-
amined with a text editor. Binary files are considerably smaller than formatted files but are

not generally transportable between different computer architectures. WARP3D offers the op-
tion to write Patran nodal results files or element results files (see Section 2.11.2).

After analysis by WARP3D and output of the results files, continue Patran execution and

the post-processing operations to read and process the results files. Because WARP3D directly
generates Patran compatible results files, there is no need for a "reverse translator" program.

The results files are also available to all users of WARP3D for input to other special-purpose

programs.

Section 2.11 describes the ordering of results for model nodes in the Patran compatible re-
sults files. Appendix A provides a description of the data formatting in these files and small

program fragments to read these files.

C.2 PATRAN-to-WARP3D Translation

The Patran-to-WARP3D translator program handles the most frequently used modeling fea-

tures of WARP3D. In some cases, Patran has modeling capabilities for which there is no corre-
sponding analysis capability in WARP3D, e.g. alternate coordinate systems. Despite these con-

ceptual differences, the use of Patran dramatically reduces the effort for model generation and

results post-processing (in nearly all cases).

The following model data in a neutral file (Patran 2.5 format) are supported by the Patran-
to-WARP3D translator program:

• Structure name (a default name is generated by the translator program).

• Structure size (number of nodes/elements).

• Nodal coordinates.

• Element incidences.

• Element types.

• Nodal constraints (absolute).

• Nodal loads (forces and temperatures).

• Element loads (uniform face pressures on 8 and 20-node elements)

• Request for computation for linear models.

• Request for output of the analysis results in Patran compatible format.

The forward translator ignores other types of data contained in the Patran generated neutral

file, e.g. material properties.

The above data constitute a large majority of the input for most finite element analyses.

A list of modeling data not currently supported by the translator includes:

• Groups other than the default group.

• Material properties for elements.

• Physical properties for elements (the Config Id is recognized by patwarp)

• Alternate coordinate systems as defined in PATRAN.

• Relative constraints.

• Solution parameters which control a dynamic or a nonlinear analysis.

Appendix C C.2 patwarp

User'sGuideD WARP31)

The processing of material properties and physical properties will be implemented in later ver-
sions of the translator program.

C.3 Executing the Translator Program

Neutral file translation is performed on all platforms by the programpatwarp (supplied in the

WARP3D distribution). The program prints an identifying message followed by a prompt for

the name of the PATRAN neutral file. The names of neutral files are assigned by the user when

prompted by Patran. patwarp verifies that the neutral file exists and that it can be processed.
If the file cannot be accessed by the translator program, the prompt is re-issued. After the neu-

tral file name has been defined, the name of the desired WARP3D input file is requested. The
file may have any name and need not already exist.

patwarp performs the translation process in two steps, although these steps are transpar-
ent to the program user. In step one, the neutral file is read and the data stored internally to

patwarp. In step two, the actual WARP3D input file is produced. A complete log of the process-

ing is displayed for the user. Afterpatwarp has terminate-:l, the user should edit the generated
WARP3D input file to supply the element properties, output requests, etc.

C.4 Element Mapping

Within Patran, elements are generated using the MESH menu form under the Finite Ele-

ments radio button on the main (top) menu). Elements have generic types such as Hex8,

Hex20, etc. For example, the Hex8 element implies a 3-D solid element that has 12 edges, 6
faces and 8 nodes.

patwarp supports only elements that conform to the Hex8 and Hex20 type in Patran. The
9, 12 and 15 node transition elements available in WARP3D are created automatically bypat-

warp from the 8-nede elements that share common faces/edges with 20-node elements (see Sec-

tion C.11 for details on processing models with transition elements). To distinguish between
different "groups" of elements (e.g. those with common material properties), the user can in-

yoke the numeric "configuration" code provided by Patran. The configuration code assigned to

each element is passed through in the neutral file for use by patwarp. The configuration code
numbers are assigned to elements in Patran using the Properties menu button on the main

form. This brings up the Element Properties menu in Patran. Click on the Input Proper-
ties button to bring up the menu form. The first listed item is Config Id.

All elements of the same type (13disop, ts15isop, etc.) with the same configuration code are

grouped in clearly identified lists in the generated WARP3D file. This feature simplifies consid-

erably the assignment of options and material properties to elements following execution of
patwarp.

C.5 Element Re-Ordering in Blocks

On vector processor computers (e.g., Crays) or for use of the Hughes-Winget preconditioner al-

gorithin on scalar computers, WARP3D requires that elements be numbered in non-conflicting
blocks. That is, no elements in a "block" may have a common node. Moreover, all elements in
a block must have the same type, the same type of nonlinearity and the same material model

(but not necessarily the same property values). Users mat indicate common elements through

the "configuration" code for the elements. Only elements with the same configuration code can
be assigned to the same block.

patwarp provides the facilities to re-number elements in this blocked manner prior to gen-
erating the WARP3D input file. patwarp prompts the user for the maximum number of ele-

Appendix C C.3 patwarp

-- User's Guide -- WARP3D

ments per block and whether the elements are to be numbered in scalar mode or vector mode.
Using a simple red-black algorithm,patwarp then assigns elements to blocks in an order which

satisfies the criteria. Elements are renumbered in sequential order within and across blocks,

with a table printed in the WARP3D input file which specifies the block number, the number
of elements in the block and the first element in the block.

The maximum block size varies with the computer architecture. For the Crays, this value

is 128 which matches the vector lengths of the hardware. For workstations, the maximum

block size is most often 64 to reduce cache memory misses.

Finally, patwarp offers to print a correspondence table between the original (PATRAN) ele-

ment numbers and the blocked element numbers. It also offers to generate a new neutral file
to reflect the new element numbering.

C.6 Constraint Processing

Nodal constraints on the three translations may be specified in PATRAN under the BCs/Loads

radio button on the main (top) menu). The translator program builds the corresponding CON-

STRAINTS data for WARP3D. Only absolute nodal constraints are handled.

In Patran, constraints may be imposed within a loading set (condition) or external to all

loadings. The patwarp translator combines all constraint sets in the neutral file into a single
block of nodal constraints.

C.7 Loads Processing

Nodal and element loads may be specified in PATRAN under the BCs/Loads radio button on
the main (top) menu). In Patran, the user groups these cases together (along with imposed dis-

placements) to define loading cases, e.g., the "default case". Thepatwarp translator processes

applied nodal forces, applied nodal temperatures and pressure loads applied to element faces.

When PATRAN writes the neutral file for the model, the loading cases are converted to sim-

ple loading "sets" with assigned numbers (1, 2, 3,...). The patwarp translator processes applied
nodal forces, temperatures and element face pressures for any number of loading sets. The

translator builds the loading condition name for WARP3D as set_n, where 'n' refers to the PA-
TRAN loading set number.

The patwarp translator now recognizes pressure loads applied to the faces of elements.

They are converted to element load commands in the WARP3D input file. Whenpatwarp auto-
matically converts an 8-node element into one of the transition elements, the user-defined pres-
sure loads are carried forward onto the transition element as well.

C.8 Solution and Output Commands

patwarp writes the following commands in the input file for analysis and output. These com-

mands request a solution for load step 1 of the model and output of PATRAN binary results
files. These commands should be modified by the user as neeeded for specific analyses.

c

c

nonlinear analysis parameters

solution technique Inpcg

c solution technique direct sparse

preconditioner type diagonal

lnr pcg conv test res tol 0.01

Appendix C C.4 patwarp

User's Guide -- WARP31"
B

maximum linear iterations 20000

maximum iterations 5

minimum iterations 1

convergence test norm res tol 0.01

nonconvergent solutions stop

adaptive on

linear stiffness for iteration one off

batch messages off

cpu time limit off

material messages off

bbar stabilization factor 0.0

consistent q-matrix on

time step 1.0e06

trace solution on ipcg_solution off

extrapolate on

c

c

compute displacements for loading test step i

output displacements 1-8

output stresses 1

output strains 1

c

output patran binary displacements

output patran binary strains

output patran binary stresses

c

stop

C.9 Example

The following example illustrates the process of translating a PATRAN model into a WARP3D

input. User supplied input values to the patwarp program is indicated in italics.

% patwarp

* PATRAN to WARP3D neutral file translator *

* Patran Version 3 and later *

* (60,000 nodes - 60,000 elements) *

* build date 8-28-97 *

* (supports 8, 9, 12, 15, 20-node elements) *

>> patran neutral file name

(default: patran.out.l) ? test_29__matra=.out

>> warp3d input file name

(default: warp3d_input) ?

>> user title as read from neutral file is:

P3/PATRAN Neutral File from: test_temper_2/bo

Appendix C C.5 patwarp

-. User's Guide -- WARP3D

>> neutral file created on: 13-Jui-96 time: 13:19:26

>> patran version:

>>>> model size parameters:

number of nodes 1572

number of elements 717

number of materials 0

number of physical properties ... 1

>> begin processing nodal data

>> processing data for node:

>> processing data for node:

>> processing data for node:

5OO

i000

1500

>> begin processing element data

>> processing data for element:

>> processing data for element:

>> processing data for element:

200

4OO

600

>> begin processing nodal displacement data

>> processing displacements for node:

>> processing displacements for node:

>> processing displacements for node:

5OO

i000

1500

>> begin processing nodal temperatures

> processing nodal temperatures for node:

> processing nodal temperatures for node:

> processing nodal temperatures for node:

500 load set:

i000 load set:

1500 load set:

>> begin element reordering

>> input desired block size. use negative number to

activate scalar mode. (default 128):128

* Warning: *

* Vectorized blocking invoked. Elements *

* are renumbered. *

>> print the new->old element listing? (y/n, default=n) :n

>> begin warp3d input file generation

>> model title and sizes written

>> nodal coordinates written

>> element types written

>> element incidences written

>> blocking command written

>> nodal loads written

>> element loads written

>> constraints written

>> warp3d input file completed

>> make an updated patran neutral file(y,n, default=n)?n

>> analysis file generation completed.

Appendix C C.6 patwarp

User's Guide -- WARP3[)

>> job terminated normally.

C.10 Limitations and Advice

The WARP3D code requires that elements and nodes be numbered sequentially. Patran per-
forms this task through the Renumber option of the main Finite Elements menu. After the

model is generated, the user should always perform a node and element compaction within Pa-
tran.

If the (old) direct solver option is used in WARP3D, the node numbering scheme should al-
ways be optimized before generating the neutral file. Use the node-id optimization command

and select the RMS wavefront to be minimized. This produces a node numbering scheme with
minimum active triangle.

C.11 Processing of Models Containing Transition Elements

The 9, 12 and 15 node elements (ts9isop, ts12isop, ts15isop) enable development of models con-

taining 8 and 20 node elements which maintain complete displacement compatibility. Howev-

er, Patran does not directly support such transition elements. Models containing these ele-

ments can be constructed and post-processed using Patran with support of the patwarp pro-
gram.

1. Create the Patran model using Hex/8 and Hex/20 type elements. At this stage there will
be mismatches in the number of nodes on common faces/edges shared between the 8 and

20-node elements. Apply nodal constraints and ele:nent pressure loadings as necessary
to the model. Configuration ids to signify different materials should be included at this
point.

2. Create the Patran neutral file for the model.

3. Run the patwarp program. Once the neutral file has been read into memory, patwarp

will ask the user if the creation of transition elements is desired. If yes, patwarp
searches the user-defined 8 and 20-node elements to find all the shared faces/edges. It

then redefines the 8-node elements as one of the tr tnstion elements (9, 12, 15 node ele-

ments) needed to maintain full displacement compatibility in the model. In this process,
no new nodes or elements are added to the model. The 8-node elements are simply refined
as transition elements by appending existing nodes (shared with 20-node elements) to

their incidence list and then re-ordering the incidences to conform with the ordering re-
quirements for nodes in WARP3D.

4. patwarp then executes the normal blocking strategy to renumber elements into blocks

of common element types and writes the WARP3I pinput file.

5. Patran compatible node and element result files m'e thus unaffected by the conversion
of some 8-node elements into transition element.,. Patran believes it is processing a

mesh of only 8 and 20-node elements. When the user requests thatpatwarp write a new
neutral file for the model to reflect the blocked element re-ordering, the transition ele-
ments are written as standard 8-node elements.

Appendix C C.7 patwarp

Appendix D

Tips for Modeling Fracture Specimens

D.1 Use Large Elements at the Loading Point

The imposition of loads through localized nodal forces or nodal displacements creates se-
vere stress-strain concentrations which may cause the nonlinear solution to converge very

slowly or not at all. The simplest remedy relies on the use of large elements at the load point
as shown in Fig. D. 1. The large elements smooth the solution by effectively spreading the

load over a large region. For problems that can be loaded through applied forces, rather

than through imposed displacements, spread the loading region over a number of elements.

A

i

Recommended
Not

Recommended

FIG. D.lmMesh Refinement Near Load Points

D.2 Displacement Extrapolation

Our experience indicates that the displacement extrapolation feature of the nonlinear solu-

tion procedure accelerates convergence, especially for large displacement-finite strain solu-

tions. In high-rate analyses, the lack of a self-similar deformation pattern leads to a large
Euclidean norm of the residual load vector after the first iteration. However, subsequent

iterations within a step typically converge more rapidly following displacement extrapola-
tion in the first iteration.

D.3 Displacement Loading During High-Rate Analyses

For high-rate loading, non-zero displacements should be applied on a single line of nodes
over the entire thickness of the specimen. Displacement loading techniques which do not

Appendix D D.1 Tips

User'sGuidem WARP3[t

follow this recommendation often produce non-convergent solutions. Figure D.2 shows

three methods for applying non-zero displacements (only -_he first method is recommended

for high-rate analyses). The two methods not recommended for high-rate loading are found

to introduce convergence problems in the analysis. Applying displacements to multiple
nodes through the depth under high-rate loading requires a rigid body acceleration for this

section of the model (shaded region of figure). If displacements are not applied over the en-

tire thickness of the model, a localized, high-rate "punching" deformation pattern may
cause the residual to become large at the edge of the applied displacement field.

For static analyses, we fred that imposition of the nodal displacements over multiple

sets of through-depth nodes, as in Fig. D.2 (b), provides more readily convergent solutions.

D.4 Newton Tolerances

Four convergence teststocontrolthe termination ofglobalNewton iterationsexistcurrent-

lyin WARP. Test number two, forexample, compares the ratioofthe Euclidean norm ofthe

residualforcevectortothe Euclidean norm ofthe totalappliedforcevector,with a user spe-

cifiedvalue ofan acceptable tolerance.This ratioofEuclidean norms should decrease to-

wards zeroby roughly one order ofmagnitude per Newton iteration.Ira slower convergence

rate persistsover several iterations,the model should be re-examined relativeto the load

step sizeand the modeling guidelinesdiscussedhere.

To provide a specificexample of tolerancesfor convergence values, consider the 3-D

analysis ofCharpy fracture specimen (10 mm square cross-section,a/W= 0.5).Elements

along the crack fronthave a nominal edge length of 10 _m. The analysis uses the small-

strain kinematic formulation with a rate dependent, linear/power law material model

(E/o o = 500, n = 10,m = 35,D = 1).The high-rateanalysiscovers 200/_sin 400 loading

stepstopush the response wellintothe fullyyieldedregime with a constant time increment

of0.5/_s.The solutionconverges in 3-4iterationsforatypicalstepusing a Newton tolerance

of 0.005 (convergence testnumber two).

D.5 Maximum Residual Force

At the completion of each Newton iteration, WARP outputs the value for the maximum re-

sidual force and node at which this residual occurs. If a step fails to converge rapidly, the

location of the maximum residual force may indicate the region of the model responsible
for poor convergence performance.

D.6 Adaptive Load Step Sizes

The adaptive solution strategy provided in WARP often proves essential in exploratory
analyses for which satisfactory load step sizes are unknown. When the specified limit on

the number of Newton iterations is exceeded, the current load step is first sub-divided into

four equal sub-steps; each of these sub-steps can be again divided into four more equal
steps if required. Even with this process, we occasionally experience problems for which the

adaptive solution strategy fails to produce a convergent solution. The difficulty is most

often traced to insufficiently tight convergence tolerances which allowed previous steps to
accumulate too much error.

D.7 Non-Convergent Solutions

Nonlinear analyses occasionally exhibit load steps which converge slowly despite seeming-
ly rapid convergence rates in previous and subsequent st_;ps. We refer to these as "sticky"

Appendix D D.2 Tips

User'sGuide_ WARP3D

Imposed Displacements -
Single Layer Through Depth

Imposed Displacements -
Multiple Nodes Through Depth

W qw IV qW • • _w "IF qw •

• d• A• ,IlL • "O • L • • • • • d
• qw IF qlW • III • I • • • I • "_

"5 "5
O • LL LL Lh , O • LL L • , • •

a) Recommended (High-Rate Loading) b) Recommended (Static Loading)

Imposed Displacements-
Partially Through Thickness

• ,IV IF IV •

"_3 L • • AlL A• LI
Ill • • • IV IF •

O • • • dh A• •

c) Not Recommended for Any Solutions

Through ,r,,--
Thickness

FIG. D.2--Procedures to Impose Loading by Nodal Displacements

steps; they can l_e caused, for example, by extension of the plastic zone across elements that

vary widely in size. WARP provides the solution parameter"nonconvergent solution contin-
ue" which forces the analysis to continue beyond a non-convergent step. If subsequent steps

show a return to rapid convergence rates, there is no accumulation of error in the solution

(WARP employs a total equilibrium formulation to compute residual nodal forces). Our ex-

perience suggests this parameter may be helpful when other options have been exhausted.

Appendix D D.3 Tips

User'sGuidem WARP3D

D.8 Mesh Refinement for High-Rate Loading

High-rate loading may deform a specimen in a substantially different manner than static

loading. The analysis of high-rate loading may require additional mesh refinement in re-
gions experiencing localized deformation. For impact loading of the Charpy specimen con-

sidered in the previous example, we find it necessary to extend detailed mesh refinement
to the quarter-span position. The additional mesh refinement is necessary to resolve the

severe bending induced gradients that occur at the quarter-span location. Without the

mesh refinement, resolution of the plastic zone of large elements with steep gradients
created convergence problems.

D.9 Blunt Notch Tip for Finite Strain Analyses

The use of"focused" element meshes to model a sharp crack tip works very well in linear

elastic and small-strain plasticity analyses and no difficulties surface in the Newton com-

putations. When such analyses must include the effects of finite strains along the crack
front, focused meshes often introduce convergence difficulties due to the exceedingly large

strain increments in elements incident on the front. In such cases, the crack tip should be

modeled as a "blunt" tip having a small, semi-circular shape (see figure). The undeformed

opening, b(_ should be defined in the model as approximately 1/3 of the deformed opening,
b, at which results in the crack tip region are needed. Once the deformed opening exceeds

-_ 3 x b(_ parameter studies reveal a minimal affect of the b_

The use of a B-bar modification to suppress volumetric locking in the 8-node solid ele-

ment occasionally introduces spurious deformation modes in elements on the free surface

of the blunt notch tip. This phenomena develops when the strains in these elements become

exceedingly large. The stabilization procedure described in Sect. 2.9.11 may or may not pre-
vent the spurious modes in crack tip elements. Our experience reveals that completely

eliminating the B-bar formulation resolves this problem, thereby allowing the achieve-

ment of larger b/b o ratios.

bo/2
iA

Turn Off B-bar in El,.,ments

on Free Surface and i_ Next Ring

FIG. D.3--Recommended Model of Crack Tip for F :.nite Strain Analyses

Appendix D D.4 Tips

50272-101

REPORT DOCUMENTATION t._ePo._NO. 2.
PAGE SRS 607

4. Title and Subtitle

WARP3D: Dynamic Nonlinear Analysis of Solids Using a Pre-
conditioned Conjugate Gradient Software Architecture

3. RecJplent's Accession No.

5. Report Data

September 1998
6.

7. Author(a) 8. Performing Organization Report No.

I_C. Koppenhoefer, A.C. Gullerud, C. Ruggieri, R.H. Dodds, B.E. Healy UILU-ENG--95-2012

10. Project/Task/Work Unit No.

NASA-Ames Research
Center,
Moffett Field, California

9. Performing Organization Name and Address

University of Illinois at Urbana-Champaign
Department of Civil Engineering
205 N. Mathews Avenue

Urbana, Illinois 61801
12.Sponsortng Organlzltlon Name and Address

U.S. Nuclear Regulatory Commission
Office Of Nuclear Regulatory Research
Division Of Engineering
Washington, D.C.

t 1. Contrect(C) or Grant(G) No.

13.Type of Report & Period Covered

14.

15. Supplementary Notes

16.Absltact (Umlt: 200 words)

__is report describes theoretical background material and commands necessary to use the WARP3D
finite element code. W_J_P3D is under continuing development as a research code for the solution of very
large-scale, 3-D solid models subjected to static and dynamic loads. Specific features in the code ori-
ented toward the investigation of ductile fracture in metals include a robust finite strain formulation,
a general J-integral computation facility (with inertia, face loading), an element extinction facility to
model crack growth, nonlinear material models including viscoplastic effects, and the Gurson-Tver-

gaard dilatant plasticity model for void growth. The nonlinear, dynamic equilibrium equations are
solved using an incremental-iterative, implicit formulation with full Newton iterations to eliminate re-

sidual nodal forces. Time history integration of the nonlinear equations of motion is accomplished with
Newmark's/3 method. A central feature of WARP3D involves the use of a linear-preconditioned conju-
gate gradient (LPCG) solver implemented in an element-by-element format to replace a conventional
direct linear equation solver. This software architecture dramatically reduces both the memory require-
ments and CPU time for very large, nonlinear solid models since formation of the assembled (dynamic)
stiffness matrix is avoided. Analyses thus exhibit the numerical stability for large time (load) steps pro-
vided by the implicit formulation coupled with the low memory requirements characteristic of an explicit

code. In addition to the much lower memory requirements of the LPCG solver, the CPU time required
for solution of the linear equations during each Newton iteration is generally one-half or less of the CPU
time required for a traditional direct solver. All other computational aspects of the code (element stif-
fnesses, element strains, stress updating, element internal forces) are implemented in the element-by-
element, blocked architecture. This greatly improves vectorization of the code on uni-processor hard-
ware and enables straightforward parallel-vector processing of element blocks on multi-processor
hardware.

17. Document Analysis a. Descriptors

Finite elements, conjugate gradient, finite-strains, plasticity, Newton, supercomputers

b. Idantlitere/Open - Ended Term s

c. COSATI Field/Group

18. Availability Statement

Release Unlimited

19. Security Class (This Report)

UNCLASSIFIED

20. Security Class (ThLs Page)

21 .No. of Pages

120

I 22. Price

UNCLASSIFIED

See ANSI-Z39.18) OPTIONAL FORM 272 (4-7?

Department of Commerce

m

